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Abstract: This study focuses on estimating the lead times of various processes in wind tower factories.
Accurate estimation of these times allows for more efficient sequencing of activities, proper allocation
of resources, and setting of realistic delivery dates, thus avoiding delays and bottlenecks in the
production flow and improving process quality and efficiency. In addition, accurate estimation of
these times contributes to a proper assessment of costs, overcoming the limitations of traditional
techniques; this allows for the establishment of tighter quotations. The data used in this study
were collected at wind tower manufacturing facilities in Spain and Brazil. Data preprocessing
was conducted rigorously, encompassing cleaning, transformation, and feature selection processes.
Following preprocessing, machine learning regression analysis was performed to estimate lead
times. Nine algorithms were employed: decision trees, random forest, Ridge regression, Lasso
regression, Elastic Net, support vector regression, gradient boosting, XGBoost, LightGBM, and
multilayer perceptron. Additionally, the performance of two deep learning models, TabNet and
NODE, designed specifically for tabular data, was evaluated. The results showed that gradient
boosting-based algorithms were the most effective in predicting processing times and optimizing
resource allocation. The system is designed to retrain models as new information becomes available.

Keywords: industrial machine learning; deep learning; regression; process time; prediction

MSC: 68T05; 68U35; 68M20; 90B06; 90B90

1. Introduction

In recent decades, the field of artificial intelligence has undergone a significant transfor-
mation. After experiencing a period of stagnation known as the “Al winter”, characterized
by a sharp decline in both funding and interest from the business sector due to the lim-
itations of Al at that time, this field has become an essential and indispensable tool in
everyday life and across various industries.

Among the different branches of Al, machine learning has emerged as an ideal tech-
nology for extracting information from collected data. This technology has the capability to
provide predictions and discern complex patterns, leading to the development of intelligent
systems. These systems are crucial in various manufacturing and logistic tasks, such as
predictive maintenance, quality improvement, supply chain management, task scheduling,
and process optimization, among others [1].

The wind energy research industry has primarily focused on the operational phase
of wind turbines, spanning from the initiation of electricity generation to the end of their
lifespan [2]. However, additional critical stages, such as the construction of wind turbine
towers, stand to significantly benefit from the application of machine learning techniques.
Strategically integrating machine learning at this stage would enable the prediction of
the total flow or completion time, from component arrival to project completion. This
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application has been considered strategic in this and other industries since process and lead
times are key factors in providing reliable schedules and assessing overall manufacturing
process efficiency.

Furthermore, some researchers have begun to focus on estimating the lead time of
individual processes, which involves the precise identification of the duration of each
phase within the manufacturing process. This is crucial as, by decomposing and thor-
oughly analyzing each production phase, congestion points and areas for improvement
can be identified. Integrating machine learning techniques at this stage allows for the
accurate prediction of the execution time for each process and optimizes resource allocation,
improving coordination between production stages and avoiding delays. Furthermore,
machine learning could be employed to estimate production costs, thereby eliminating the
limitations of current techniques such as direct formulation or linear programming. While
these traditional methods are commonly used, direct formulation often fails to realistically
reflect process times or costs, and linear programming may struggle to adapt in dynamic
production environments.

Deep learning has experienced exponential growth in recent years, particularly in
processing unstructured data such as text and images. In natural language processing
(NLP), recurrent architectures have been fundamental for developing machine translation
applications, enhancing the machines’ ability to understand and generate text [3]. Similarly,
in the field of computer vision, convolutional neural networks have revolutionized image
analysis and recognition, being applied in tasks such as image classification [4]. However,
recent years have seen significant efforts to advance the development of neural networks for
structured data, such as database tables. Models such as TabNet and NODE have emerged
as promising alternatives for handling tabular data, offering competitive performance
alongside good interpretability [5,6]. Therefore, in this paper, we aim to test two deep
neural network algorithms for tabular data, specifically TabNet and NODE, and evaluate
their suitability for use in an industrial process.

The main objective of this paper is to research, design, develop, implement, and
evaluate machine learning and deep learning algorithms on tabular data to estimate the
lead time of each phase in the context of wind turbine tower manufacturing. This improved
information will enable two important aspects of the factories to be optimized: (a) efficient
process scheduling and resource allocation, and (b) accurate production cost estimation.

During the development of this study, an exhaustive process was undertaken to im-
plement machine learning algorithms in the context of wind turbine tower manufacturing.
Special emphasis was placed on the process of data identification to ensure the relevance
and accuracy of the data used. Data were collected from 11 January to 22 December 2022 at
wind turbine tower construction facilities located in Spain and Brazil, and are described
in more detail in Section 3. The dataset resulting from the research process comprises
231,678 observations collected from both factories. For each analyzed operation, specific
machine learning algorithms were trained using relevant subsets of the dataset. These data
underwent rigorous preprocessing, which included error correction, handling of missing
values, and the selection of the most relevant features for each operation in collaboration
with the engineering departments of the plants.

The innovations and contributions of this paper are as follows:

1.  Design and development of a system employing various machine learning algorithms
to predict processing times in the context of the efficient scheduling of different
processes and resource allocation. Additionally, this system can be used for accurate
production cost estimation.

2. Evaluation of tabular neural network algorithms to determine their usefulness in an
industrial context.

3. Analysis and comparison of various evaluation metrics relevant to regression problems
within this context. The aim is to enhance understanding and identify the most suitable
metric for effectively comparing the performance of the proposed models.
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4. Incorporation of a feature into the system that allows for retraining models as they
degrade over time, using new records to keep them updated.

5. Validation of the proposed methodology through the use of various datasets obtained
from two wind turbine tower construction factories located in Spain and Brazil.

Our study aims not only to address the specific challenges of wind turbine tower
manufacturing but also to lay the groundwork for future research and applications in the
field of machine learning applied to industry. By developing and evaluating algorithms
to optimize resource allocation and cost estimation in this particular context, we hope to
improve the efficiency of wind turbine tower production and inspire new research at the
intersection of Al and the energy industry. This work could serve as a starting point for
the development of broader and more customized solutions in other areas of industrial
production, paving the way for smarter, more efficient, and sustainable manufacturing.

The rest of this article is structured as follows. Section 2 provides the context for the
construction of wind turbine towers, outlines the relevant processes, and discusses the
use of machine learning in wind energy and wind tower manufacturing. Section 3 details
the proposed methodology used in this study. Section 4 presents the results derived from
analyzing various datasets and the implementation of the system. Section 5 provides a
summary and discussion of the analysis results. Finally, Section 6 discusses the conclusions
of this work and suggests directions for future research.

2. Machine Learning in Wind Energy and Wind Tower Manufacturing

The construction of a wind turbine is divided into a number of independent manufac-
turing processes, which, when properly assembled, result in an operational wind turbine.
Among the various components of a wind turbine, the tower stands out as one of the most
critical elements in the construction of the turbine. It needs to be tall enough to capture
strong and stable winds, as well as robust enough to withstand the forces of the wind and
the vibrations generated by the rotor. In addition, towers can be difficult to transport and
represent a significant proportion of the manufacturing cost of a wind turbine. To provide
context for this study, the manufacturing process of a wind tower will be broken down.

The manufacturing process for these structures is complex and demanding, involving
the handling of large products and numerous manual operations. The first step in manu-
facturing a wind turbine tower is to select the appropriate materials, with steel or concrete
plates being the primary raw materials due to their strength and durability. These plates
are then cut to the tower design specifications, and their edges are prepared for welding
through a process known as beveling. The plates are then bent to form rings, referred to in
this document as ’cans’, and longitudinal welds are made at their ends.

Once several cans have been produced, they are joined together by circular welding to
form a tower section. Towers are manufactured in sections for ease of transportation, as it
would be impractical to transport a complete tower. In addition, flanges are added to both
ends of each section to facilitate assembly. The assembled sections then undergo quality
testing and surface treatments, such as painting or corrosion protection, to ensure longevity
and prepare internal components and doors. Finally, the tower sections are transported to
the installation site where they are mounted and assembled to complete the tower.

Sainz detailed the different stages of the process and pointed out several automation
technologies that could increase the production capacity of the industry [7]. In a wind
turbine manufacturing facility, each process is divided into a specific number of tasks
and operations, which depend on several variables, contingent upon various influencing
factors. These operations and variables were subjected to a rigorous analysis in order to
identify which of these variables are significant in determining the operation lead time.
The following bullet points delve into the diverse processes scrutinized within this study,
with the delineation of variable selection deferred to Section 3.

¢  Plate Cutting: The plate-cutting process involves cutting raw steel plates to produce
sheets with the perimeter and length required to form the cylinders. This operation
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can be carried out in various ways, depending on the thickness of the steel, using
techniques such as plasma cutting or oxy-fuel cutting.

e  Plate Beveling: The plate-beveling operation consists of cutting the edges of a steel
plate at an angle other than 90 degrees to obtain a stronger and higher quality weld
joint. This process is performed on the edges of the previously cut plate, which is then
joined by welding to form the cylinder.

e  Plate Bending: The plate-bending process involves shaping the steel plates, previously
cut and beveled, into a cylindrical form to create the cylinders that constitute the tower
section. This is done using bending machines or roller presses, which exert pressure
to shape the plate as desired.

¢  Longitudinal Welding: In the longitudinal welding operation, the ends of the steel
plate, previously cut, beveled, and bent, are joined by welding to transform the plate
into a ring. This process results in the formation of a cylinder.

*  Rebending: In certain circumstances, a cylinder stored for a prolonged period can
become deformed due to its own weight. For this reason, before being sent to other
areas, it is necessary to restore it to its original ring shape. The rebending process
refers to correcting the deformations that may have occurred during storage or due to
defects in the bending process.

¢  Fit-Up and Circular Welding: The fit-up process involves joining different cylindrical
cylinders to construct a complete section of the tower through the circular welding
process. Additionally, at this stage, flanges are installed at both ends of the segment to
facilitate the joining of sections during the assembly phase.

The majority of the scientific literature applying machine learning to the wind energy
sector focuses on the operational phase of a project when wind turbines are in full energy
production [8]. Three main lines of research stand out in this area.

Firstly, the field of prediction and data analysis has seen significant interest in forecast-
ing the electrical output of wind turbines using various types of data, such as historical
records [9] or wind speeds [10-15]. Methods such as decision trees, random forests, gradi-
ent boosting, and multilayer perceptrons (MLPs) have been employed to understand the
complex relationship between wind conditions and energy production in wind farms [16].
Additionally, MLPs have been used to predict wind speeds on an hourly basis [17].

Deep learning techniques have also been applied in this area. Researchers have used
convolutional neural networks (CNNs) to detect objects, thereby identifying locations for
offshore wind energy infrastructure [18]. Another study employed CNNs and support
vector machines (SVMs) to create a bird identification system designed for offshore wind
farms [19,20]. Furthermore, reinforcement learning has been explored to develop a hybrid
route-planning method for navigation in areas with offshore wind farms [21].

In the area of optimization and control, research has utilized deep reinforcement
learning to develop a wind farm control scheme aimed at optimizing energy generation
under various wind conditions [22]. Another study used graph-based neural networks to
connect wind turbines based on their geographical location, aiming to optimize turbine
layout and improve energy production [23]. Additionally, a multi-objective predictive
control strategy for floating wind turbines using recurrent neural networks has been
proposed [24].

Lastly, in the area of maintenance and health monitoring, researchers have applied self-
organizing maps and multilayer perceptrons to efficiently plan and execute maintenance
and repair tasks [25]. Others have focused on the visual inspection of wind turbines using
R-CNNs, enhancing early problem detection and optimizing maintenance procedures.
Moreover, a fault detection and diagnosis system for the pitch control system of wind
turbine blades has been developed using a hybrid approach with a Kalman filter and
multilayer perceptron [26].

The literature addressing the operational aspects of wind turbine manufacturing,
particularly focusing on fundamental operations and activities, remains rather limited. One
study explored the variability in delivery times associated with the bending process in wind
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turbine tower manufacturing, utilizing machine learning techniques. The objective was to
comprehend the impact of various factors on these times, thereby enhancing plant planning
and control [2]. An important aspect of the aforementioned study was the inclusion of
operator-related variables. Another research paper proposed a machine learning-based
system employing regression models to forecast lead times in sequential manufacturing
processes. The efficacy of the system was validated on a wind turbine tower manufacturer,
demonstrating improved predictive accuracy, particularly in longitudinal welding opera-
tions [27]. The study incorporated the field of knowledge of how variables in upstream
processes can influence downstream processes. Existing studies have concentrated on
the prediction of one or two specific processes. However, no research has provided a
comprehensive prediction of all stages of wind tower production.

3. Proposed Methodology

The methodology behind this study involves developing a system that employs
machine learning algorithms to predict processing times in the context of production
control and the estimation of production costs. For this purpose, a methodology divided
into the following stages has been designed: acquisition and exploration of data, data
preprocessing, training and evaluation of algorithms, and generation of time information.

3.1. Acquisition and Exploration of Data

In industrial environments, a significant portion of data originates from both the com-
pany’s Enterprise Resource Planner (ERP) and the Manufacturing Execution System (MES).
Additionally, it is supplemented with insights gleaned from interviews with operators,
who provide valuable perspectives on relevant variables and potential shortcomings in
data collection.

The collected data are stored on various internal company storage systems, including
an internal cloud storage platform. This private cloud infrastructure offers advantages in
terms of scalability, accessibility, and data security while maintaining full control over the
data within the company’s own computing environment. The use of internal cloud storage
is especially beneficial in this research due to the large volume of data collected from
multiple factories, which facilitates access to data from different locations and collaboration
between team members. A wide range of information is thus obtained, covering project-
specific technical data such as part dimensions, material consumption, and production
times calculated using formulas. In addition, operating hours are recorded in the ERP
system, providing a detailed overview of plant activity.

Information regarding recorded delivery times and machine usage is input by plant
workers at the end of each operation. Hence, it is essential to consider that data quality
may vary due to human error or the presence of missing values. These errors can impact
the accuracy of subsequent analyses and must be addressed through data cleaning and
validation techniques.

For this research, data were collected throughout the year 2022 from wind tower
construction factories located in Spain and Brazil. In the Spanish factory, a total of
20,938 temporal entries were recorded in the system, while the Brazilian counterpart accu-
mulated 210,740 temporal records. This extensive dataset provides a robust foundation for
analysis and the identification of areas for improvement in manufacturing processes.

Due to the variety of sources providing data and the necessity to create a dataset for
each operation and each factory, it was essential to implement a procedure that enabled the
efficient integration of all information within each operation we aim to analyze, in addition
to performing an exploratory analysis of the data. This process is illustrated in Figure 1.
Table 1 compares the sizes of datasets for each operation across different factories.
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Figure 1. Data acquisition and exploratory data analysis (EDA) workflow.

Table 1. Comparison of dataset sizes for each operation in the respective factories.

Factory/Operation Cutting Beveling Bending Long. Welding Rebending Fit-Up Circ. Welding

Spain 2163 2135 1985 1987 1432 2150 185
Brazil 17,650 17,704 18,511 16,961 1244 5694 1910

One of the challenges identified in carrying out this task was the manner in which
the data are recorded by the ERP system. The recorded operations provide information on
the start and end of activities input by the operators. This means that to complete a single
operation, multiple entries may have been logged in the ERP. These multiple entries can
be due to the process being performed at different times or even by different individuals.
Despite these challenges, effective solutions were successfully implemented.

Each dataset contains numerous columns. Below, we present the columns that are
common across all datasets:

e  Start Date: The date when the process began.

o  Start Time: The time when the process began.

*  End Date: The date when the process ended.

e  End Time: The time when the process ended.

¢  Area: The area where the process was being carried out.

*  Center: The factory where the process was carried out.

*  Project: The identification of the project to which it belonged.

*  Can: The can of a section to which it belonged. (This was only available if it was an
operation where a record is a can; for example, in circular welding, where we work
with sections, this did not exist).

e Section: The section of the tower to which it belonged.

*  Tower: The tower to which this record belonged.

*  Employee Name: The name of the employee(s) assigned to perform a process.

e Workstation: The identifier of the workstation where the process was performed.

*  Reported Operation Time: The time recorded for the completion of an operation.

¢ Downtime: The time during which the process was halted.

*  Deviation Reason: The description of the reason why an activity was not performed
as planned.

*  Plate Properties: The main characteristics of a plate, such as its thickness and length,
among others.

*  Machine: The machine used in this process.

Additionally, each process had different attributes that were added, such as the types
of bevels used in the beveling process.
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After collecting the data, an initial exploration was carried out to identify patterns,
trends, and possible outliers in each operation. This exploratory analysis relied on a variety
of statistical methods and visualization tools to examine the data distribution, as well as to
identify possible relationships between variables and detect significant patterns.

It is important to highlight that much of the information about waiting times and
machinery usage is entered by workers during operation, which can result in errors.
Additionally, it should be considered that the workflow may vary significantly between the
two countries.

In summarizing the analyses conducted, it was observed that most of the numerical
attributes in each of the processes show an asymmetric distribution, both positive and
negative, suggesting a deviation from the normal distribution. Additionally, no significant
linear relationship was identified between these attributes and the total execution time.

Anomalies are patterns in data that deviate from normal instances. Detecting these
anomalies is of utmost importance, as they can identify issues or failures in data collection or
quality. Moreover, this contributes to maintaining data integrity and improving efficiency
and performance in general. One widely used technique for anomaly detection is the
isolation forest algorithm [28]. This algorithm is based on the premise that anomalous
instances are easier to isolate than normal instances

The algorithm works by constructing multiple isolation trees, also known as iTrees.
An iTree is a special type of binary decision tree that, instead of classifying or predicting
values, aims to isolate all data observations in individual leaves for subsequent analysis of
which attributes are anomalous.

The procedure for building these trees involves the selection of an attribute and a
cutoff value within the range of that feature. Significantly, the cutoff value is not predeter-
mined but rather randomly selected within the feature’s range. This inherent randomness
constitutes a crucial aspect of the unsupervised nature of the isolation forest algorithm,
thereby enabling its efficacy in effectively isolating anomalies. The dataset is then divided
based on that feature and cutoff value. This process is repeated recursively until a stopping
condition is met. As shown in Figure 2, anomalous observations tend to be located in the
shallower branches of the tree, while normal observations require more divisions, placing
them in deeper branches.

To increase the detection capability, an ensemble of isolation trees is constructed
to assign anomaly scores to the observations, where the lowest scores indicate a higher
probability of being anomalies.

Isolation Forest
A

iTree iTree o000 iTree @ Outiier

' Potential
Anomaly

Normal
Instance

Figure 2. Isolation forest construction.
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The isolation forest algorithm was employed to detect potential anomalies in the
operation times of the various processes in the factory. It was found that approximately
15-20% of the recorded times for each operation were considered outliers. Addressing
these anomalous data points may improve the overall efficiency, productivity, and quality
of the products being produced.

3.2. Data Preprocessing

To enhance the quality of information and facilitate the development of predictive
models, an exhaustive process of data cleaning and transformation was carried out. This
process included error correction in texts, imputation of missing values, and normalization
of attributes. Additionally, feature engineering techniques were applied to optimize predic-
tive quality, removing irrelevant attributes and adding new attributes based on knowledge
provided by the company’s engineering department. In Figure 3, the flow of how a process
is cleaned can be observed.

Preprocessing
< Data Data Feature
- Cleaning — > Transformation > selection ] >
Operation Operation

(Clean)

Figure 3. Data preprocessing.

3.2.1. Data Cleaning

The data cleaning process aims to enhance data quality through various techniques,
including the removal of duplicate rows and the treatment of missing values.

Although no duplicate rows were identified in the datasets, missing values were
detected due to data shortages in the projects or difficulties in reading the information.
To address these missing values, the option to delete instances with missing values was
dismissed due to the small size of the datasets. Instead, imputation was selected, utilizing
the mean for numerical attributes and the mode for categorical variables.

3.2.2. Data Transformation

Although datasets may include categorical variables, most machine learning algo-
rithms and libraries are tailored to handle numerical data. Consequently, it is imperative to
transform these columns to ensure precise data interpretation. Additionally, certain models,
such as neural networks, can be highly sensitive to data scale, necessitating adjustments to
these features for an optimal representation [29].

Data scaling is a fundamental procedure used to standardize variables to a common
scale. Its aim is to eliminate disparities in variable magnitudes and ensure optimal per-
formance in machine learning models and algorithms. Various data scaling methods are
employed, including standardization and normalization.

Standardization involves adjusting the data such that the mean of the observed val-
ues is equal to 0 and its standard deviation is equal to 1. This is achieved through the
following formula:

X —

Xotd = 1)

Normalization adjusts the data distribution to fit within a range between 0 and 1.
There are several normalization methods, but one of the most renowned is min-max
normalization. The formula for this method is as follows:
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X — Xmin
X = 2
nom Xmax - Xmin ( )

Here, X represents the current value, Xy, is the minimum value, and Xmax is the
maximum value in the dataset.

It is crucial to note that, besides normalization and standardization, there exist various
scaling methods, such as robust scaling. The choice of an appropriate method largely
depends on the nature of the dataset and the specific problem being addressed. In this
study, normalization was chosen due to its ability to adjust all data within a range of 0 to
1. This technique enabled us to mitigate disparities in the magnitudes of dataset features,
thereby facilitating a more equitable comparison among them.

Furthermore, it is essential to consider that algorithms such as support vector machines
(SVMs) and neural networks are extremely sensitive to the scale of data. Normalization
ensures a uniform scale that is vital for these models, significantly improving their perfor-
mance and stability.

In addition to data scaling, the encoding of categorical variables is crucial for machine
learning applications. Categorical variables are attributes that represent different categories,
such as the color of a painting or the type of animal. To utilize these variables in machine
learning models, it is necessary to convert them into numerical formats understandable
by algorithms. Two common techniques for this conversion are ordinal encoding and
one-hot encoding.

Ordinal encoding assigns a numerical value to each category based on a specific
order, while one-hot encoding creates a new column for each category, assigning a 1 if the
observation belongs to that category and a 0 otherwise.

In our study, we evaluated several encoding techniques and found that one-hot
encoding was most suitable for our purposes. This technique has demonstrated robust
performance in most cases, despite the resulting increase in dimensionality.

3.2.3. Feature Selection

Feature selection involves identifying the most relevant and representative variables
within a dataset to enhance data precision and efficiency. It is a key process in data
preprocessing aimed at reducing data dimensionality by eliminating uninformative or
noisy features. It is categorized into two main types: unsupervised methods, which identify
relevant features based on data structure and distribution, and supervised methods, which
utilize label or target value information for feature selection. In our practical case, we
employed unsupervised methods to eliminate redundant features and collaborated with
the engineering department to enhance predictive quality for specific operations. Table 2
presents the most relevant features considered for each operation under study.

Table 2. Feature selection across various wind tower manufacturing processes.

Feature Cutting Beveling Bending Long. Welding Rebending Fit-Up Circ. Welding
Plate thickness v v v v v v v
Plate length v v v
Plate width v v
Cutting perimeter v
Machine type v v v v
Bevel type v
Plate perimeter v
Taper of ferrule v v
Ferrule Diameter v v
Presence of flange v
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In this context, the selection of attributes was determined by cost estimation. However,
when developing models for scheduling purposes, it may be necessary to include additional
attributes, such as the workers assigned to a specific process or other relevant resources.

3.3. Training and Evaluation of Algorithms

Once the data were prepared for implementation, the next step was to select the optimal
model for each of the relevant operations in this study. Therefore, in the following sections, we
discuss the training and evaluation processes for each of these relevant operations.

3.3.1. Machine Learning Algorithms Employed

The No-Free-Lunch theorem highlights the absence of a universal optimal solution for
all problems [30]. In the field of machine learning, this premise implies the need to explore
and evaluate a variety of models and approaches to find the most suitable solution within a
specific business context. Since each problem presents unique characteristics and particular
challenges, it is crucial to conduct a comprehensive evaluation of various models using
relevant datasets.

In our study, we employed a variety of machine learning algorithms to address
the resolution of our problems. These algorithms can be broadly classified into tree-
based methods, regularized linear regression methods, support vector regression methods,
models based on gradient boosting, and the multilayer perceptron.

Tree-based methods, such as decision trees (DTs) and random forests (RFs), are popular
due to their simplicity and interpretability.

A DT is a graphical representation model used for decision-making in regression and
classification problems, structured as a tree with decision and response nodes. The decision
nodes pose questions about attributes and divide the data into branches, while the response
nodes provide the final decision. The CART algorithm, one of the most employed methods,
constructs binary trees based on the reduction of metrics such as the MSE, which measures
the average of the squared errors between predictions and actual values. The process
continues recursively until stopping criteria are met, producing a decision tree that predicts
continuous values with greater accuracy and can be used on new data samples [31].

RF is a machine learning ensemble method that combines multiple DTs to improve
accuracy and reduce overfitting in classification and regression problems. Each tree is
built using different data samples and randomly selected features, introducing diversity
among the trees. The final prediction is obtained by averaging the individual predictions
of the trees in the case of a regression problem [32]. This combination of predictions
improves the model’s generalization capacity and makes it more robust and accurate.
Additionally, random forest is known for its ease of use and its ability to provide feature
importance measures.

Regularized regression techniques are variants of linear regression that introduce
additional penalties in a model’s objective function to reduce overfitting, thus improving the
model’s generalization. LASSO employs a type of penalty that promotes model simplicity
by forcing some coefficients to zero, facilitating the automatic selection of relevant variables
and reducing dimensionality [33]. In contrast, RIDGE employs a penalty that reduces the
coefficients of less important variables without eliminating them [34], which is useful when
all variables are desired in the model but with lesser influence. The advantage of RIDGE
over LASSO is that it is differentiable at all points, allowing this regularization technique to
be used in neural networks. ENET combines both penalties, offering a balance between
LASSQO'’s variable selection and RIDGE’s handling of correlated variables [35].

SVR is an adaptation of support vector machines (SVMs) that addresses regression
problems. Instead of seeking a hyperplane that separates classes, as in the case of SVMs,
the objective of this model is to find a function that fits the data as best as possible, consider-
ing a tolerable margin of error. This function, known as the decision function, is determined
by identifying the support vectors, which are the data instances closest to the error margin
limit. SVR is particularly useful when dealing with noisy or nonlinear datasets, as it allows
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the selection of different kernel functions, such as linear, polynomial, or Gaussian, to adapt
to the data complexity and improve prediction accuracy.

Models based on gradient boosting are machine learning algorithms that employ
an iterative approach to improve prediction accuracy. These models start with a simple
regression model, such as a decision tree, and then build new models to predict and
minimize the residual errors generated by previous models. Each new model focuses on
correcting the errors made by previous models, which allows predictions to be gradually
improved as more models are added. In the final model, each of the models contributes
to the final prediction, and a weight is assigned to each one according to its relative
contribution to improve overall accuracy [36].

Following the initial creation of GB, several significant improvements were developed
in machine learning algorithms. A notable example is XGBoost, an enhanced and opti-
mized version by Tianqi Chen. This model employs decision trees as weak classifiers and
focuses on minimizing residual errors in each iteration [37]. XGBoost has won numerous
competitions in Kaggle and has become an essential tool in various industries due to its
ability to improve the model’s generalization and avoid overfitting problems, especially in
small or noisy training datasets.

On the other hand, LightGBM (LGBM), developed by Microsoft Research, is an algo-
rithm based on gradient boosting decision trees (GBDTs) that is designed to reduce memory
usage and accelerate the conventional GBDT training process by more than 20 times while
maintaining almost equal accuracy. LightGBM employs a histogram-based algorithm to
group continuous features into discrete containers, thus facilitating the evaluation of infor-
mation gain. Additionally, it uses advanced techniques such as Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB) to accelerate calculations and
improve model accuracy [38].

The multilayer perceptron (MLP) is a type of artificial neural network with a feedfor-
ward structure, where information flows from the input layer to the output layer through
one or more intermediate hidden layers. Each layer is composed of interconnected neurons
with associated weights that are adjusted during training to minimize error. MLPs employ
nonlinear activation functions in the neurons of the hidden and output layers, allowing
them to model complex relationships between input and output variables and learn nonlin-
ear patterns in the data. In the context of a regression problem, the output layer has a single
neuron with a linear activation function, and the network is trained to predict a continuous
numeric value.

3.3.2. Deep Tabular Learning

In addition to traditional machine learning models, two deep neural network archi-
tectures for tabular data are employed. The aim is to evaluate their performance in an
industrial environment and compare them with conventional methods.

TabNet is a deep neural network architecture designed to provide a high-performance
and explainable model from tabular data. It accepts raw tabular data without the need
for any preprocessing and does not require feature engineering, thanks to its sequential
attention mechanism that selects relevant features at each decision step [5].

The TabNet architecture is structured into N sequential steps, where inputs are trans-
mitted from one to another. Each step begins with a transformation through an attention
block that uses a sparse matrix to perform feature selection, followed by a feature selection
mask as a regulatory mechanism. After applying the attention transformer, the feature im-
portances are added to those of other steps to obtain the final feature importances. Finally,
a feature transformer is used before restarting the cycle.

NODE is an architecture that combines the interpretability of decision trees with
the learning capability of neural networks. It uses layers of decision trees called ODTs
(Oblivious Decision Trees), where each tree contributes independent decisions that are
combined to form the model’s final output. ODTs are less prone to overfitting and more
efficient in inference than traditional trees, as all decisions are made in parallel at each depth
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level. NODE uses an alpha-entmax function for feature and branch selection, allowing it to
capture complex interactions in tabular data through dispersed distributions controlled
by a hyperparameter alpha. This architecture can be implemented as a set of independent
trees or in a multi-layer structure, similar to DenseNet in CNNSs, enabling the capture of
complex dependencies between layers [6].

3.3.3. Performance Evaluation Criteria

Metrics play a fundamental role in the field of machine learning, as they enable us to
evaluate and quantify the quality and performance of predictive models. These measures
provide us with information on how effectively the model adapts to both training data and
previously unseen data [39]. However, choosing an inappropriate metric can result in a
flawed model evaluation.

An illustrative example would be the use of the accuracy metric in a regression
problem. This metric measures the number of correct assessments made by a model in
relation to the total number of predictions made, making it a commonly used metric in
classification problems. However, in the context of this research, which focuses on solving
regression problems, the goal is to predict continuous values rather than assign classes or
categories. Therefore, calculating accuracy in this situation would be meaningless, as it is
not a binary or multiclass classification task.

To evaluate the effectiveness of predictive models, different metrics are used, including
the maximum error, mean absolute error (M AE), root mean square error (RMSE), mean
absolute percentage error (MAPE), adjusted coefficient of determination (R? adjusted),
and training execution time.

1 X
MAE =) lyi — §il 3)
i=1
1 .
RMSE =\ [~} (vi = §) (4)
i=1
1 &y — Ui
MAPE = = Y |£i25i w100 5
& ®
Yy —9:)?
RZ =1-— ln 1 . 6
Y (yi —7)? ©)
> . (A-R)x(m-1)

where y; represents the actual values, §; represents the model predictions, n denotes the
number of observations, p denotes the number of predictors, 7 represents the mean of the
actual values, and R? is the coefficient of determination.

However, the RMSE was selected as the primary decision criterion for the following reasons:

1. Clarity: The RMSE, through the squaring of individual errors, eliminates the influence
of their sign, providing an absolute measure of error performance. By standardizing
errors on a consistent scale, it simplifies their interpretation, enhancing clarity in the
assessment process.

2. Sensitivity to Large Errors: In contrast to the MAE, which treats all errors equally,
the RMSE assigns higher weight to large errors owing to its quadratic nature. Conse-
quently, the RMSE is more adept at capturing the impact of outliers, thus enhancing
the robustness of the evaluation process.

3. Comparability: The RMSE enjoys widespread usage in regression problems, facilitat-
ing result comparison across studies and contributing to a more cohesive evaluation
framework within the analysis domain. Its ubiquity not only ensures compatibility
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with the existing literature but also fosters a more comprehensive understanding of
model performance in the broader research context.

3.3.4. Training

The training and initial evaluation of the models were conducted without adjusting
any hyperparameters, aiming to use them as baseline models for subsequent comparison
with those where hyperparameter tuning is performed. In order to impartially assess
the initial performance of these models and avoid overfitting, the hold-out technique was
applied. This technique involves dividing the dataset into two parts: a training set and
a test set. The training set, comprising 80% of the dataset, was utilized for model fitting,
while the remaining 20% was reserved for performance evaluation.

Once the baseline models were obtained, the process of finding the model that best fits
the data in each relevant factory operation was carried out. To achieve this goal, grid search
was initially chosen for exhaustive exploration of the hyperparameters. However, it was
found that some models, such as XGBoost or LightGBM, had a considerably wide search
space in which to perform an exhaustive search. Faced with this scenario, the decision was
made to tackle this challenge more efficiently by combining random search for hyperparameters
with the K-fold cross-validation technique across all analyzed models.

Random search is an optimization technique where hyperparameter values are sam-
pled randomly from a specified range or distribution. Unlike grid search, which ex-
haustively evaluates all possible combinations within a predefined grid, random search
evaluates a fixed number of randomly chosen combinations, which often leads to better
performance for large or complex search spaces. This method can be more efficient and
effective when dealing with models that have many hyperparameters or where the search
space is very large [40].

K-fold cross-validation is a technique that allows for a more reliable evaluation of
the model’s performance by dividing the dataset into multiple subsets or “folds”. In each
iteration, one of these subsets is used as the test set, while the remaining subsets are used
to train the model. This process is repeated until each subset has been used as the test
set once. By combining random search with cross-validation, different combinations of
hyperparameters are selected to train and evaluate the model on different data splits. This
reduces bias and provides a more accurate estimation of performance on unseen data [41].

It is important to note that each model adjusted the number of iterations in the random
search of hyperparameters according to its unique characteristics. This decision is based
on the inherent complexity of each algorithm and its sensitivity to various configurations.
For example, simple models like linear regression require a smaller search space, while
neural networks like MLP may need a more extensive exploration due to their larger
number of hyperparameters. For details on the hyperparameters used for each algorithm,
please refer to Appendix A.

In each operation within the various areas analyzed in the factories, an approach for
model selection based on prominent metrics was implemented, initially prioritizing the
RMSE criterion. In situations where there is a tie in terms of the RMSE, other metrics are
used as criteria to break the tie. Once the model that yields the best results is identified, it
is stored for later use.

To visualize this stage, please refer to Figure 4, and to understand how the random
search algorithm works for a generic model, it is recommended to consult the pseudocode
provided in Algorithm 1.
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Figure 4. Structure of how ML models are trained.

Algorithm 1 Random search with K-fold cross-validation for regression models. Adapted
from [40,41].

Require: Trainingset T = {(x1,11),..., (xt, yt)};
The regression model § with hyperparameters set H;
Number of iterations N;
Number of folds k for cross-validation.
Ensure: The best set of hyperparameters best_h and the best score best_score.
1: Initialize best_score < oo
2: Initialize best_h < {}
3: fori < 1to N do
Randomly select a set of hyperparameters ; from H
Initialize cv_scores «+ |]
for each fold f in k-fold cross-validation do
Split T into training set T}, and validation set T, for fold f
Train { with hyperparameters h; on Ty,
fold_score < Evaluate((, Ty, ) {Use a regression metric like RMSE}
10: Append fold_score to cv_scores
11:  end for
12:  score <— Mean(cv_scores)
13:  if score < best_score then

D A

14: best_score < score
15: best_h + h;

16:  end if

17: end for

18: return best_h, best_score

3.4. Generation of Time Information

Once the models have been evaluated and verified to fulfill their purpose, they can be
integrated into a system with the objective of providing significant business value, specifi-
cally in calculating the lead times of each operation for scheduling or quotation purposes.

The system operates as follows: when the user submits a request, they must enter a
series of inputs, including the type of problem they want to solve (scheduling or quotation),
the type of operation to be performed (predictions or retraining), and the relevant dataset,
among other inputs. With this information, the system identifies the type of problem to be
addressed and determines whether it is necessary to execute a new process or utilize the
models that were previously trained and stored during the training and evaluation phase.
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It is important to note that although models based on tabular data generally offer good
predictions, in systems where training needs to be swift, employing this type of model may
not be efficient. This aspect is discussed in more detail in Section 4.

The system performs the corresponding action, whether it is training or prediction,
and displays a confirmation message to the user. The structure and functionality of the
proposed system are illustrated in Figure 5.

Scheduling Inference
Predict
Predict
Retrain
S| erence  Trin odels
> Models
A Response Quotation
User
Predict
: Replace
Train
fetan L Data & __ Model '
etrain Preprocessing ;
Evaluation
System Train Quotati
uotation
Models
Training
Confirmation Models

Figure 5. Structure of proposed system.

4. Experimental Results

This section discusses the results obtained using our proposed methodology for
estimating lead times. Due to the significant differences between estimating lead times
in the two types of problems, we decided to present the results obtained from predicting
various operations in the problem of accurate production cost estimation. Each factory was
studied independently to ensure the accuracy of our findings.

In addition, the hardware used for the various experiments is described, followed
by the presentation of the results in the subsequent tables, which illustrate the outcomes
of each process throughout its progression. This is complemented by an overview of the
implementation of the developed system, including its prediction and retraining capabilities
to address model degradation. The set of hyperparameters that yield optimal performance
for the most effective models in each operation are detailed in Appendix C.

4.1. Experimental Environment

In this paper, all the experimental codes are written in Python. The details of the
environment on which the experiments depend, including the Python version, libraries,
frameworks, hardware specifications, and operating system, are shown in Table 3.

Table 3. Details of experimental setup.

Component Details
CPU Intel Core i9-12900K, 16 cores
GPU NVIDIA GeForce RTX 3080 Ti, 12 GB memory, 10240 CUDA cores
RAM 32GB
Operative System Windows 11
Programming Language Python 3.10

Numpy [42], Pandas [43], scikit-learn [44], PyTorch Tabular [45],
Matplotlib [46], Seaborn [47], PyCaret [48]
IDE VS Code

Packages




Mathematics 2024, 12, 2347

16 of 34

4.2. Cutting

The results in Table 4 reveal the performance achieved by each model with the optimal
configuration derived through a random hyperparameter search on the sheet-cutting
dataset. Notably, in the Spanish factory, except for the MAPE, adjusted R?, and training
time, the NODE model demonstrated superior performance compared to other models.
However, random forest (RF) also exhibited similar metrics regarding the RSE, with a
significantly better training time. Conversely, in Brazil, the performance of the LightGBM
model stood out, surpassing all other models, except for the training time, although it tied
with XGBoost (XGB) in the RMSE. Table A6 presents the model that best fits the data from
the various factories in the sheet-cutting process.

Table 4. Results obtained for each model with the best configuration through random search on the
cutting dataset.

Factory Model MAE RMSE MAPE (%) R2Adjusted Train Time (s)

Spain DT 0.4642 0.5854 50.0436 0.0768 1.6846
RF 0.4551 0.5775 50.04 0.1016 5.7529
RIDGE 0.4787 0.6055 52.8253 0.0122 0.2167
LASSO 0.4778 0.6073 53.1677 0.0064 0.2201
ENET 0.4777 0.6072 53.1461 0.0068 0.2224
SVR 0.4771 0.6043 53.2817 0.016 0.9936
GB 0.4638 0.5879 50.8454 0.0687 3.6476
XGB 0.4641 0.5881 50.1401 0.068 4.8992
LGBM 0.4603 0.5827 50.0085 0.0851 7.5646
MLP 0.4756 0.5968 50.6251 0.0403 7.5191
TabNet 0.4625 0.5952 48.0406 —0.06884 2196.096
NODE 0.4526 0.5721 48.1065 0.01174 10,363.06

Brazil DT 0.1073 0.1331 25.2989 0.172 2.6177
RF 0.1073 0.1328 25.339 0.1755 16.182
RIDGE 0.1095 0.1349 26.0212 0.1492 0.3628
LASSO 0.1125 0.1368 26.8496 0.1254 0.3825
ENET 0.1120 0.1363 26.7176 0.1316 0.441
SVR 0.1092 0.1346 25.906 0.1532 19.9348
GB 0.1076 0.1330 25.4048 0.173 14.99
XGB 0.1073 0.1325 25.3456 0.1786 26.977
LGBM 0.1072 0.1325 25.2653 0.1789 51.4082
MLP 0.1096 0.1347 26.1195 0.1522 16.6133
TabNet 0.109427  0.136893 25.60443 0.115645 5177.50
NODE 0.106676 0.132541 25.4344 0.171134 7568.785

4.3. Beveling

Table 5 shows the results of the hyperparameter optimization process conducted
via random search. Negative values in the adjusted R-squared column for both factories
indicate a poor fit of the model to the data, which could be attributed to data noise or
a mismatch between the model and the data structure. In the Spanish factory, the XGB
model achieved the best results across most metrics, except for the training time, where
the LASSO model was the fastest. On the other hand, in the Brazilian factory, the NODE
model stood out for its excellent performance, although its training time was significantly
higher compared to other models. The other models achieved slightly less precise results
but with much shorter training times. The models that best fit the data, along with their
hyperparameters, are shown in Table A7.
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Table 5. Results obtained for each model with the best configuration through random search on the

beveling dataset.

Factory Model MAE RMSE MAPE (%) R2 Adjusted Train Time (s)

Spain DT 2.3545 2.8553 152.8884 0.049 0.2969
RF 2.3705 2.8501 156.381 0.0525 6.1435
RIDGE 2.4109 2.868 165.7692 0.0406 0.2645
LASSO 2.4275 2.8806 168.0643 0.0321 0.271
ENET 2.4201 2.8751 166.9682 0.0358 0.2704
SVR 2.4081 2.8731 166.0973 0.0371 1.4238
GB 2.3754 2.8424 159.8668 0.0576 3.4153
XGB 2.3666 2.8356 155.5675 0.0621 5.8287
LGBM 2.3858 2.8606 156.1941 0.0455 9.5314
MLP 2.4092 2.8655 169.4229 0.0423 29.6221
TabNet 2.4274 2.9618 136.1569 —0.070 2676.87
NODE 3.0839 3.7674 97.5814 —0.7370 15,866

Brazil DT 0.0730 0.0947 19.3447 0.1800 2.3477
RF 0.0729 0.0942 19.3047 0.1878 16.7318
RIDGE 0.0756 0.0973 19.9906 0.1327 0.4930
LASSO 0.0798 0.1007 21.1560 0.0724 0.4050
ENET 0.0811 0.1019 21.4878 0.0490 0.4096
SVR 0.0760 0.0973 20.2003 0.1340 11.2810
GB 0.0730 0.0944 19.3507 0.1851 14.4489
XGB 0.0730 0.0943 19.3244 0.1861 28.3986
LGBM 0.0727 0.0940 19.2483 0.1908 28.4344
MLP 0.0760 0.0957 20.5187 0.1616 22.8199
TabNet 0.1022 0.1366 26.0893 —0.7776 3083
NODE 0.0748 0.0963 19.9164 0.1550 6246.319

4.4. Bending

Table 6 summarizes the results of the hyperparameter evaluation. Negative adjusted
R-squared values indicate poor model fit due to data noise or mismatch. In the Spanish
facility, XGBoost (XGB) performed the best overall, except for the training time. Tabular
neural network models also showed competitive performance but required longer training
durations. Conversely, at the Brazilian factory, the tabular neural network model NODE
demonstrated superior performance in the MAE, RMSE, and MAPE metrics, establishing it
as the best model for this task. Table A8 details the model that best fits the data from the

factories in the bending process.

Table 6. Results obtained for each model with the best configuration through random search on the

bending dataset.

Factory Model MAE RMSE MAPE (%) R2 Adjusted Train Time (s)

Spain DT 0.2435 0.3114 15.2196 0.0269 0.447
RF 0.2414 0.3077 15.1508 0.0501 9.4977
RIDGE 0.2462 0.3155 15.4378 0.0014 0.3818
LASSO 0.2496 0.3153 15.7818 0.0024 0.3795
ENET 0.2486 0.3145 15.7166 0.0076 0.4239
SVR 0.2462 0.3152 15.453 0.003 1.3174
GB 0.2422 0.3076 15.2155 0.0507 7.1917
XGB 0.2402 0.3073 15.003 0.0527 7.8403
LGBM 0.2445 0.3102 15.3767 0.0345 10.1291
MLP 0.2448 0.3125 15.4013 0.02 8.0982
TabNet 0.3409 0.4380 20.2737 —0.71129 2114.821
NODE 0.2655 0.3364 15.9844 0.030462 26,611.66
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Table 6. Cont.

Factory Model MAE RMSE MAPE (%) R2 Adjusted Train Time (s)

Brazil DT 0.217629 0.264736 19.06009 —0.00987 2.686931
RF 0.21713 0.264244 19.02788 —0.00613 26.32093
RIDGE 0.216803 0.263774 18.99115 —0.00255 0.656738
LASSO 0.216707 0.263629 18.98983 —0.00145 0.65939
ENET 0.216915 0.263759 19.01269 —0.00244 0.663005
SVR 0.216688 0.263813 18.9572 —0.00285 64.17738
GB 0.21708 0.264101 19.02094 —0.00503 23.9229
XGB 0.217106 0.264052 19.02791 —0.00467 32.71342
LGBM 0.217182 0.264109 19.03515 —0.0051 50.22291
MLP 0.218289 0.264646 19.31309 —0.00919 39.64824
TabNet 0.236308 0.29646 20.11344 —0.26967 4947.336
NODE 0.216513 0.263311 18.78136 0.001389 22,622.8977

4.5. Longitudinal Welding

In Table 7, the results are presented after performing a random search of the hyper-
parameters. During dataset testing with these models, issues arose when attempting to
train the different neural networks designed for tabular data; hence, they do not appear
in the results in this table. In the Seville factory, the LGBM model stood out as it achieved
the best metrics, while in the Brazil factory, the XGB model performed the best, demon-
strating that in both cases, for this problem, gradient boosting-based models yielded better
results. Table A9 presents the best model that fits the data from the different factories in the
longitudinal welding process.

Table 7. Results obtained for each model with the best configuration through random search on the
longitudinal welding dataset.

Factory Model MAE RMSE MAPE (%) R2 Adjusted Train Time (s)

Spain DT 0.6155 0.7788 21.1316 0.0783 1.7475
RF 0.5974 0.7615 20.5429 0.1189 5.8555
RIDGE 0.6104 0.7701 21.0718 0.0988 0.2285
LASSO 0.6147 0.7697 21.2637 0.0998 0.2319
ENET 0.6133 0.7699 21.2001 0.0992 0.2367
SVR 0.6108 0.7732 20.7838 0.0916 1.3211
GB 0.5960 0.7693 20.5543 0.1006 3.6245
XGB 0.5942 0.7690 20.5006 0.1014 4.6344
LGBM 0.5910 0.7608 20.3361 0.1206 8.8708
MLP 0.6096 0.7690 20.9206 0.1015 15.1607

Brazil DT 0.25589 0.3221 17.30496 0.17474 2.28899
RF 0.25561 0.32157 17.29898 0.17745 17.53911
RIDGE 0.25939 0.32513 17.53897 0.15916 0.33473
LASSO 0.27268 0.33667 18.42142 0.0984 0.33708
ENET 0.28008 0.3445 18.8961 0.05597 0.33469
SVR 0.25864 0.32493 17.43438 0.16017 48.73003
GB 0.25587 0.32151 17.31692 0.17775 16.14765
XGB 0.25498 0.32119 17.23131 0.17942 19.91989
LGBM 0.25576 0.32192 17.29746 0.17564 64.05158
MLP 0.25968 0.32358 17.9417 0.16714 46.47257

4.6. Rebending

Table 8 shows model evaluations post-hyperparameter tuning via random search. The
negative adjusted R2 values suggest poor data fit due to noise or model-data mismatch.
In Seville, gradient boosting notably enhanced the MAE, RMSE, and MAPE metrics. Neural
networks for tabular data exhibited longer training times but performed competitively.
Conversely, in Brazil, NODE excelled in the MAE, RMSE, and MAPE metrics despite
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extended training periods. TabNet, however, yielded an MAPE over 100%, indicating
substantial prediction discrepancies. Table A10 lists the optimal factory-specific rebending

process models.

Table 8. Results of models determined through random search on the rebending dataset.

Factory Model MAE RMSE MAPE (%) R2Adjusted Train Time (s)

Spain DT 0.3182 0.3910 41.9814 0.0049 1.7262
RF 0.3146 0.3865 41.4139 0.0281 5.4414
RIDGE 0.3241 0.3936 441764 —0.0081 0.2363
LASSO 0.3274 0.3957 44.8102 —0.0189 0.2361
ENET 0.3240 0.3932 44.2470 —0.0062 0.2442
SVR 0.3236 0.3922 44.1203 —0.0011 0.6704
GB 0.3150 0.3854 41.9179 0.0335 3.2214
XGB 0.3139 0.3857 41.4309 0.0319 3.8591
LGBM 0.3147 0.3840 41.7782 0.0404 7.0541
MLP 0.3212 0.3927 43.0614 —0.0036 4.4895
TabNet 0.3342 0.4172 46.1915 —0.1439 1917.4800
NODE 0.3225 0.3851 46.0042 0.0353 8570.6000

Brazil DT 0.1580 0.1904 42.5823 —0.0314 2.0558
RF 0.1592 0.1911 42.6567 —0.0384 5.8700
RIDGE 0.1587 0.1893 43.0207 —0.0191 0.2561
LASSO 0.1586 0.1887 43.1433 —0.0132 0.2559
ENET 0.1586 0.1891 43.0440 —0.0172 0.2625
SVR 0.1591 0.1890 43.6599 —0.0160 0.3911
GB 0.1582 0.1890 42.7117 —0.0162 2.6744
XGB 0.1587 0.1887 43.2165 —0.0134 2.6293
LGBM 0.1586 0.1887 43.1433 —0.0132 5.3262
MLP 0.1582 0.1898 42.1096 —0.0250 2.7716
TabNet 0.4619 0.5189 124.9740 —10.7883 1588.57
NODE 0.1484 0.1795 40.2075 —0.0427 7738.602

4.7. Fit-Up

After evaluating models on the fit-up dataset, the Spanish factory showed notable
performance differences (See Table 9). XGBoost achieved the lowest MAE, while SVR
excelled with the best RMSE and adjusted R?. Despite TabNet’s superior MAPE, its overall
effectiveness was hindered by prolonged training times. Conversely, in the Brazilian factory,
challenges arose with neural networks due to data issues. RF exhibited the lowest MAE,
SVR had the lowest MAPE, and XGBoost demonstrated the lowest RMSE, making it the
preferred model. The lower adjusted R? in Spain suggests potentially higher data quality
in Brazil, influencing model performance and predictive accuracy.

Table 9. Results of models determined through random search on the fit-up dataset.

Factory Model MAE RMSE MAPE (%) R2Adjusted Train Time (s)

Spain DT 1.2011 1.5541 39.5827 0.1080 2.1730
RF 1.1936 1.5260 39.4140 0.1400 3.9951
RIDGE 1.2155 1.5197 40.6624 0.1470 0.2224
LASSO 1.2279 1.5250 41.0332 0.1410 0.2230
ENET 1.2316 1.5259 41.1330 0.1400 0.2342
SVR 1.1901 1.5152 37.9503 0.1521 0.9706
GB 1.1929 1.5250 39.8664 0.1411 2.5775
XGB 1.1803 1.5183 39.2723 0.1486 3.7558
LGBM 1.1999 1.5368 39.8310 0.1278 7.9077
MLP 1.2101 1.5210 40.2099 0.1456 17.1328
TabNet 1.2550 1.6374 36.8195 —0.0185 2698.59
NODE 1.4181 1.8409 37.2561 —0.3163 78,024.08
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Table 9. Cont.
Factory Model MAE RMSE MAPE (%) R2 Adjusted Train Time (s)
Brazil DT 2.3676 3.4031 21.5839 0.8570 0.4868
RF 2.3601 3.4145 21.2198 0.8561 9.4197
RIDGE 2.4686 3.4660 23.5846 0.8517 0.4311
LASSO 2.4657 3.4634 23.3255 0.8519 0.4376
ENET 2.4962 3.4678 24.2983 0.8515 0.4406
SVR 2.4344 3.4686 21.1076 0.8515 3.4559
GB 2.3619 3.4037 21.4262 0.8570 5.1694
XGB 2.3654 3.4006 21.4145 0.8572 7.3314
LGBM 2.3831 3.4333 21.8825 0.8545 23.5088
MLP 2.4299 3.4292 22.7512 0.8548 50.9705

4.8. Circular Welding

Table 10 presents the results obtained after adjusting the hyperparameters through
a random search. Unlike other processes segmented into sections, this case deals with an
entire tower section, resulting in significantly higher errors due to longer execution times.
It is important to note that these datasets contain a limited number of examples, which
complicates the training of tabular neural network models. Therefore, in this study, only
traditional metrics have been used.

Table 10. Results obtained for each model with the best configuration through random search on the
circular welding dataset.

Factory Model MAE RMSE MAPE (%) R2 Adjusted Train Time (s)

Spain DT 8.5956 12.5213 13.0593 0.6221 1.6795
RF 9.1742 12.7837 14.2495 0.6061 2.5769
RIDGE 15.9338 18.5804 24.7620 0.1679 0.2118
LASSO 16.0120 18.6271 24.7898 0.1637 0.2128
ENET 15.9469 18.6081 24.7673 0.1654 0.2147
SVR 16.1549 19.2444 25.4084 0.1074 0.2266
GB 9.1216 12.8523 14.1254 0.6019 0.9746
XGB 8.9914 12.7037 13.7033 0.6110 1.1620
LGBM 8.4832 12.4146 13.2389 0.6285 1.0141
MLP 11.5148 14.8114 17.2949 0.4713 4.6914

Brazil DT 3.7852 4.8947 10.9932 0.5548 2.1393
RF 3.7731 4.8448 10.9575 0.5638 3.6586
RIDGE 4.3557 5.5093 12.5142 0.4360 0.2700
LASSO 4.3671 5.5155 12.5436 0.4347 0.2636
ENET 4.4576 5.5584 12.7941 0.4258 0.2636
SVR 4.1971 5.5583 11.7384 0.4259 0.6297
GB 3.8114 4.8595 11.0604 0.5612 1.5213
XGB 3.7851 4.8888 10.9821 0.5558 2.2018
LGBM 3.8037 4.8549 11.0232 0.5620 4.7461
MLP 4.1083 5.2086 11.7463 0.4958 21.1404

In the Seville factory, the LGBM model stood out in terms of the MAE, RMSE, and ad-
justed R? metrics. The DT model performed well in the MAPE, while the RIDGE model had
a reduced training time. Thus, the LGBM model emerged as the preferred option for the
Seville factory. In contrast, in the Brazilian factory, the RF model excelled in most metrics,
including the RMSE, making it the preferred option in this case. Table A12 presents the
best model that fits the data from the different factories in the circular welding process.

4.9. Implementation of the System

In this subsection, we discuss the implementation of a system designed to perform
predictions and retrain models in response to degradation. This discussion is framed within
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the context of accurate production cost estimation. Additionally, the procedures for task
scheduling and resource allocation are addressed, as they follow a similar methodology.

4.9.1. Prediction

Once the system is initialized, the user accesses the type of operation they wish to
solve, opening an interface similar to that shown in Figure 6. The process for performing
predictions is as follows: the user selects the factory for which they wish to calculate
lead times. Internally, the system identifies the necessary models for making predictions.
Subsequently, the user adds rows corresponding to the components, along with the requisite
attribute values for prediction. The columns may vary based on the factory and the nature
of the problem. Upon clicking the Calculate button, the system executes the predictions
and outputs a tabular file, as illustrated in Table 11.

Table 11. Results of lead-time estimation (example).

Operation Canl Can2 Can3 Can4 Can5 Can6 Can7 Can8 Can9 Section
Cutting 1.60 1.62 1.37 1.37 1.45 1.42 1.60 1.62 1.37 13.42
Beveling 6.19 5.63 5.56 9.04 491 5.10 6.19 5.63 5.56 53.81
Bending 1.94 1.82 1.73 1.58 1.65 1.63 1.94 1.82 1.80 15.90
Longitudinal Welding  3.89 3.09 3.09 2.98 2.75 2.57 3.89 3.25 3.09 28.61
Rebending 0.88 0.83 0.85 0.66 0.71 0.78 0.88 0.83 0.79 7.20
Fit-up 3.78 3.82 3.78 2.60 2.90 2.96 3.78 3.82 3.78 31.21

Circ. Welding 103.45

@ 127.00.1:7860 aQ A @ m =

Predict
Lead Time Calculator

o Each row represents e for which you want to calculate the times for various operations.

file with the information. To make the prediction, click the Calculate button.

o You can enter the d ually or upload a

o The result will be downloaded in an Excel file

t will contain the calculations performed.

Output

Thickness Width Length Presence_tile Presence_flange Type_of_beve  Spain--2024-06-13-18-02-09. 57KB Download

27.2 2978.67  21636.71  true true Asymmetric
Calculate

30 2336 18781.5  true true Asymmetric
24 2970 18803.58  true true Asymmetric
22 26554 14279.629 false false Asymmetric
24.2 2511.38  15725.069 false false Asymmetric
20 2990.72  17041.1  true true Asymmetric
27.2 2978.67  21636.71  true true Asymmetric
30 2336 18781.5  true true Synmetric

24 2970 18803.58  true true Asymmetric

& Newrow - New column
Factory
Spain -
Select tabular file

Clean

Figure 6. Example of lead-time prediction.

4.9.2. Retraining

Once we understand how to perform predictions, we explore how to train new models
adapted as they degrade over time. Figure 7 illustrates the system layout for this functionality.
Unlike the previous tab, all components are inputs because the new model is saved internally
in the database, replacing the previous model. The process for retraining unfolds as follows:
first, you must select the operation and factory for which you wish to modify the model.

In contrast to the previous setup, all these elements are inputs, as the output is stored
directly on the server. This setup includes the specific operation and factory for which
we aim to train the new model, alongside a read-only dataframe showcasing the essential
columns for training a specific operation at the selected factory. Generating a model that
predicts all datasets would increase problem complexity. Once these parameters are chosen,
the dataframe updates with the necessary columns for model training, and it is time to load
the data. Once confirmed, the training process can be initiated by pressing the Train button.
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127.0.0.1:7860 L A @ m = R

e

Training Machine Learning Models

led in the table. Only the first 10 rows of the uploaded file will be displayed.

dy to use in the Predict section to make predictions about the processing time of the virolas.

Thickness width Length Machine Perimeter_cutting Total_time
27.2 2978.678 21636.713 Plasma 48987 2.033

21 2970.667 18781.551 Plasma 42398 1.099 Operation

30 2336 18778.45  Oxy-cutting 42330 1.299 Cutting

22 2990.726 15272.823 Plasma 35543 1.303

23 2989 18803.582 Plasna 43636 0.726

50 2367.439 13217.989 Oxy-cutting 30545 1.58 4

20 2990.193 10052.291 Plasma 22661.28 0.97 . .
Confirm Train Cancel

28.8 2960 21921.164 Plasma 49862 2
25 2989 18803.582 Plasna 43636 1.467

36 4091.12  17768.297 Oxy-cutting 39287 0.333

Select tabular file

Clean
Figure 7. Visualization of the training notification.

Attempting to train a model with an empty dataframe and confirming the operation
generates an error, alerting the user to the need to add data for the new model. In the
absence of errors, the training process commences, which is reflected in the event logs,
where models are trained and adjusted automatically without user intervention. If the
process proceeds smoothly, the model is replaced and ready to make predictions.

5. Discussion

The results of this study underscore the performance characteristics of various models,
including traditional machine learning models and tabular neural network models, across
numerous industrial operations in two distinct factories. The models are evaluated based
on several performance metrics, such as mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE), adjusted R?, and model training
time, which are visually represented as radial charts in Appendix B to facilitate comparison.

The results summarized in Table 12 indicate that there is no single model that is optimal
for all situations within the set of operations evaluated in each factory. Instead, a limited
variety of models show good performance in different contexts. In Spain, models based
on gradient boosting, such as XGBoost and LightGBM, stand out for their effectiveness
in solving the problem, followed by SVR. However, in Brazil, where some attributes
differ, boosting-based models continue to perform well, although NODE achieves better
results in some operations. These findings highlight the importance of selecting the most
appropriate model for a given dataset based on its characteristics and the specific problem
being addressed.

Table 12. Performance assessment of the models that offer the best fit to the data across the diverse
relevant operations of the two analyzed factories.

Spain Brazil

Operation Best Model RMSE (h) Best Model RMSE (h)
Cutting NODE 0.5721 LGBM 0.1325
Beveling SVR 2.8263 LGBM 0.094
Bending XGB 0.3073 NODE 0.2633
Long. welding LGBM 0.7608 XGB 0.3211
Rebending LGBM 0.384 NODE 0.1795

Fit-up SVR 1.516 XGB 3.40

Circ. welding LGBM 12.41 RF 4.8448
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Upon analyzing the RMSE values, it was observed that several operations, such as
bending and recoiling, exhibited low RMSE values, indicating a trend toward accuracy in
predictions for these specific datasets. On the other hand, the circular welding operation
displayed a significantly higher RMSE value compared to the other operations. This
disparity could be related to both the dataset size and the long execution times associated
with this operation. Therefore, there is a need to investigate and improve the effectiveness
of models in this particular operation.

The results in Section 4 indicate that while neural network models for tabular data
can achieve performance comparable to traditional models, they require significantly
longer training times. A notable example is the NODE model, which has proven to be the
most effective in several tasks but also exhibits the longest training times. Additionally,
occasional issues have been reported during its execution. These issues may be attributed
to an inefficient memory implementation, which demands a considerable amount of GPU
memory to converge [6].

Despite potential advancements, traditional machine learning models are expected
to maintain a significantly faster training speed compared to deep learning models for
tabular data. Various studies support this claim, highlighting the effectiveness of tree-based
models such as XGBoost (XGB) and random forest (RF) on medium-sized tabular datasets
(approximately 10,000 samples). These studies have found that XGB consistently outper-
forms deep learning models like NODE and TabNet in terms of accuracy, training speed,
and hyperparameter tuning, requiring substantially less adjustment and computational
effort [49,50].

Therefore, for industrial applications, it may be more advantageous to employ tra-
ditional machine learning techniques, particularly gradient boosting algorithms such as
XGB or LGBM. These models not only offer fast training speeds but also deliver strong
performance, making them a preferred choice in many practical scenarios. The combination
of their efficiency and effectiveness makes them valuable tools for handling tabular data in
industrial environments.

In addition to considering model performance in terms of training speed, it is also
crucial to select models that are explainable. Explainability in machine learning refers
to the ability to understand and communicate how a model makes specific decisions or
generates predictions, which is essential for ensuring transparency and accountability in
the use of these models. For instance, in the context of this study, identifying the most
relevant features that may influence a particular operation allows us to better understand
the model’s decision-making process and enhance confidence in its predictions.

Machine learning models are commonly divided into two categories: white-box
models and black-box models. Black-box models are those that are difficult to interpret due
to their mathematical complexity, such as hyperplane-based models (SVM), models based
on biological neural networks, probabilistic and combinatorial logic models, or instance-
based models (such as k-nearest neighbors). In contrast, white-box or explainable models,
such as decision trees and rule-based systems, are designed to provide clear explanations
of how predictions are generated, offering a balance between accuracy and understanding
without the need for additional models for interpretation [51].

In this research, the model with the best overall performance, which in this case was
LGBM, was chosen. This model provides complete transparency regarding how predictions
are made, allowing for a greater understanding and explainability of the obtained results.
To demonstrate the explainability of this model, the importance of various features in each
model and for each operation was analyzed, excluding the rebending process due to its low
frequency in the factory. The metric used for this analysis was gain, which measures the
improvement in impurity reduction (such as mean squared error) resulting from including
a feature in the model. A higher gain indicates that the feature is more important to the
model, as it contributes more significantly to the accuracy of the predictions. Therefore,
the results and analyses presented in this study focus on the most significant and frequent
processes in the factory.
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The obtained results are visualized in Figures 8 and 9. In the Spanish industrial
facility, it is evident that the inherent characteristics of the sheet metal are the most relevant,
particularly the thickness and length of the sheet. It can be observed that the types of
beveling or machine specifications generally have minimal or no importance. However,
in the fit-up process, the presence of a flange shows significant relevance. On the other hand,
in the Brazilian factory, it is observed that in most processes, the attribute that provides
the greatest gain is the thickness of the sheet metal, followed by other related attributes.
Similar to the Spanish factory, the types of beveling and other characteristics have very low
or no importance.
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Figure 8. Feature importances across various operations at the factory in Spain.
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Figure 9. Feature importances across various operations at the factory in Brazil.

6. Conclusions and Future Work

In this study, several machine learning and deep learning algorithms have been
examined and evaluated with the purpose of estimating processing times in different
operations of factories specialized in the construction of wind turbine towers. The results
obtained indicate that the use of machine learning models, capable of analyzing large
volumes of data and identifying underlying patterns among relevant variables, significantly
improves the accuracy in predicting the total operation time.

Among the various algorithms evaluated, models based on gradient boosting, such
as XGBoost and LightGBM, have demonstrated superior performance in addressing the
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problems outlined in this study. However, positive results were also obtained with models
such as SVR and NODE. Regarding neural network algorithms for tabular data, such as
NODE and TabNet, it is important to note that the training times of these models are
significantly higher compared to more traditional machine learning techniques. Therefore,
in production environments, it may be more beneficial to employ traditional algorithms
that offer similar results but in much shorter timeframes.

In summary, this work makes significant contributions in the following aspects: It
introduces an innovative method to estimate lead times in the wind tower manufactur-
ing industry, optimizing process scheduling and resource allocation, as well as accurate
production cost estimation. This work tests neural network models for tabular data in an
industrial context and designs a system capable of applying these models in practice to
estimate lead times based on the specific problem and factory. Additionally, the system
includes the capability to retrain the models as they degrade over time. This opens the door
to substantial improvements in operational decision making within this industrial field.

As future lines of research, it is proposed to extend the analysis carried out in this
research to other factory operations. The aim is to obtain a more detailed understanding of
the various processes that take place in order to develop specialized predictive models for
each of them. This expansion will not only allow the identification of areas for improvement
in different processes but will also facilitate the implementation of more effective and
tailored solutions for each specific operation.

Additionally, the integration of Explainable Artificial Intelligence (XAI) techniques,
such as LIME (Local Interpretable Model-agnostic Explanations) [52] and SHAP (SHapley
Additive exPlanations) [53], will be studied to improve the transparency and interpretability
of predictive black-box models. XAI will provide detailed information on the contribution
of various factors to the predictions, allowing stakeholders to better understand the model’s
decision-making process. This transparency is essential for building trust and facilitating
the adoption of Al-based solutions in industrial environments, leading to more informed
and safer decision making in manufacturing processes.

As a prospective line of research, it is suggested to refine the system by incorporating
functionalities to automatically exclude models showing poor performance in various
operations for future retraining phases. In addition, the gradual integration of new machine
learning models could provide a wider and more optimal range of model options for
the system.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence
ML Machine Learning
DL Deep Learning

DTs Decision Trees

RF Random Forest

RIDGE Ridge Regression

LASSO  Lasso Regression

ENET Elastic Net

SVR Support Vector Regression

GB Gradient Boosting

XGB eXtreme Gradient Boosting
LGBM Light Gradient Boosting Machine
MLP Multilayer Perceptron

NODE Neural Oblivious Decision Ensembles
MSE Mean Square Error

MAE Mean Absolute error

RMSE Root Mean Square Error

MAPE Mean Absolute Percentage Error
R? Coefficient of determination

Appendix A. Hyperparameters for Machine Learning Models

The tables in this section showcase the hyperparameter configurations used in the
machine learning and deep learning models during the training stage. Specifically, Table A1
presents the hyperparameters for decision trees and random forests, while Table A2 covers
those for regularized linear regression models. Tables A3-A5 detail the hyperparameters
for support vector machines, boosting models, and neural networks, respectively.

Table A1. Parameter tuning ranges and descriptions for decision tree (DT) and random forest (RF)
algorithms.

Model Parameters Tuning Range Description

DT max_depth [5,30] Maximum depth of each tree
min_samples_split [2,20] Minimum number of samples required to split a node
min_samples_leaf [1,20] Minimum number of samples required to be at a leaf node

RF n_estimators [50,200] Number of trees in the forest

max_depth [5,30] Maximum depth of each tree

min_samples_split [2,20] Minimum number of samples required to split a node
min_samples_leaf [1,20] Minimum number of samples required at each leaf

Table A2. Parameter tuning ranges and descriptions for regularized linear regression models.

Parameter Tuning Range Description

alpha [0.001,0.99] Regularization parameter

Table A3. Parameter tuning ranges and descriptions for support vector regression (SVR).

Parameter Tuning Range Description
kernel linear, rbf, poly Type of kernel
C [1.5,10] Regularization parameter
gamma [1x107¢,1 x 1072] Kernel coefficient

epsilon [0.01,0.5] Error tolerance
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Table A4. Parameter tuning ranges and descriptions for the gradient boosting (GB), extreme gradient
boosting (XGB), and light gradient boosting machine (LGBM) algorithms.

Model Parameter Tuning Range Description
GB n_estimators [50,200] Number of estimators
learning_rate [0.01,0.1] Learning rate
max_depth [3,10] Maximum depth of trees
. . Minimum number of samples
min_samples_split [2,10] required to split a node
min samples leaf [1,5] Minimum number of samples
—Sampres— ! required to be at each leaf node
XGB alpha [0.001,0.99] Regularization parameter
max_depth [3,11] Maximum depth of trees
learning_rate [0.001,0.1] Learning rate
n_estimators [100,500] Number of trees in the forest
gamma 0,0.2] Loss reduction threshold to split a
node
subsample [0.6,1] Proportion of samples used to train
each tree
Proportion of features used to train
colsample_bytree [0.6,1] cach tree
LGBM boosting gbdt, dart, goss Types of boosting algorithms
num_leaves [20,60] Number of leaves
max_depth -1,5,10,15,20 Maximum depth of trees
learning_rate [0.001,0.5] Learning rate
n_estimators [100,2000] Number of estimators
subsample [0.2,0.8] Proportion of samples used to train
each tree
colsample_bytree (0.4,0.6] Proportion of features used to train
each tree
alpha 0,1x 107%,1,2,5,7, 10, 50, 100 L1 regularization coefficient
lambda 0,1x 1071, 1,2,5,7, 10,50, 100 L2 regularization coefficient
Table A5. Parameter tuning ranges and descriptions for the MLP, TabNet, and NODE algorithms
Model Parameter Tuning Range Description
MLP hidden_layer_sizes (50,), (100,), (50, 50), (100, 50) Hidden layer sizes
activation relu, tanh Activation function
solver ADAM, SDG Algorithm for weight optimization
learning_rate constant, adaptive Learning rate used by the solver
max_iter [100,1000] Maximum number of iterations
TabNet n_d [4,64] Dimension of prediction layer
n_a [4,64] Dimension of attention layer
n_steps [3,10] Number of successive steps
gamma 1.0,1.2,1.5,2.0 Discount factor
mask_type sparsemax, entmax
NODE num_layers [1,10] Number of layers
num._trees 256,512,1024,2048 Number of Qbhv1ous Decision Trees
in each layer
depth [4,9] Tree depth
tree_output_dim [1,5] Output tree dimensionality
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Appendix B. Comparative Analysis of Performance Metrics across Factory Operations
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Figure A1l. Comparative analysis of performance metrics across factory operations in Spain.
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Figure A2. Comparative analysis of performance metrics across factory operations in Brazil.
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Appendix C. Summary of Best Model Parameters by Operation

Table A6. Best model parameters for each factory in the Cutting dataset.

Factory Best Model Parameter

Parameter Settings

Spain NODE num_layer 2
num_trees 2048
depth 6

Brazil LGBM boosting_type gbdt
colsample_bytree 0.991
learning_rate 0.239
max_depth 7
n_estimators 346
num_leaves 35
reg_alpha 2
reg_lambda 50
subsample 0.382

Table A7. Best model parameters for each factory in the Beveling dataset.

Factory Best Model Parameter

Parameter Settings

Spain XGB alpha 0.1682
colsample_bytree 0.6
gamma 0.1178
learning_rate 0.0232
max_depth 3
n_estimators 198
subsample 0.8

Brazil LGBM boosting_type gbdt
colsample_bytree 0.7234
learning_rate 0.0198
max_depth 6
n_estimators 1708
num_leaves 27
reg_alpha 1
reg_lambda 10
subsample 0.2174

Table A8. Best model parameters for each factory in the Bending dataset.

Factory Best Model Parameter

Parameter Settings

Spain XGBoost alpha 0.30
colsample_bytree 0.8
gamma 0.1936
learning_rate 0.0227
max_depth 3
n_estimators 199
subsample 0.9

Brazil NODE num_layers 6
num_trees 1024
depth 6
additional_tree_output_dim 3
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Table A9. Best model parameters for each factory in the Longitudinal Welding dataset.

Factory Best Model Parameter Parameter Settings

Spain LightGBM  boosting_type ‘gbdt’
colsample_bytree 0.7473
learning_rate 0.2932
max_depth 8
n_estimators 990
num_leaves 51
reg_alpha 5
reg_lambda 0.1
subsample 0.4015

Brazil XGBoost alpha 0.48
colsample_bytree 1.0
gamma 0.19
learning_rate 0.018
max_depth 3
n_estimators 360
subsample 0.7

Table A10. Best model parameters for each factory in the Rebending dataset.

Factory Best Model Parameter Parameter Settings

Spain LightGBM  boosting_type gbdt
learning_rate 0.2819
max_depth 9
n_estimators 141
n_leaves 32
reg_alpha 5
reg_lambda 100
subsample 0.5111

Brazil NODE num_layers 8
num_trees 512
depth 6
additional_tree_output_dim 3

Table A11. Best model parameters for each factory in the Fit-up dataset.

Factory Best Model Parameter Parameter Settings

Sevilla ~ SVR C 6.74455
Epsilon 0.496958
Gamma 0.0091147
Kernel rbf

Brazil XGB alpha 0.34
colsample_bytree 1.0
gamma 0.13
learning_rate 0.018
max_depth 3
n_estimators 333

subsample 0.6
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Table A12. Best model parameters for each factory in the Circular Welding dataset.

Factory Best Model Parameter Parameter Settings

Spain LGBM boosting_type gbdt
colsample_bytree 0.5185
learning_rate 0.2899
max_depth 8
n_estimators 500
num_leaves 57
reg_alpha 0
reg_lambda 0
subsample 0.6304

Brazil RF max_depth 15
min_samples_leaf 4
min_samples_split 5
n_estimators 88
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