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 A B S T R A C T

Accurate lead time prediction is critical for optimizing sequential manufacturing processes, particularly in 
industries with high variability such as wind turbine tower production. This paper proposes a machine learning-
based system to estimate lead times for two pivotal sequential operations: bending and longitudinal welding 
(LW). A distinctive feature of this system is its innovative integration strategy, where the predictive output 
from the bending model, specifically, the predicted bending lead time and its associated error, is leveraged 
as an input feature for the LW lead time estimation model. This approach explicitly models and enhances 
the representation of inter-process dependencies. While bending predictions show moderate performance, 
their inclusion as inputs demonstrably and significantly improves LW lead time estimation accuracy. A key 
contribution of this work is the comparative analysis between the ML-based LW predictions and traditional 
engineering methods. Our results demonstrate that the integrated ML model for LW achieves a 54% reduction 
in MAE (from 11.36 to 2.03 h) and a 74% lower RMSE (from 12.01 to 3.13 h) compared to engineering 
estimates, validating its superior accuracy. To enhance interpretability, SHAP (SHapley Additive Explanations) 
identifies critical factors such as sheet thickness, personnel experience, and upstream process quality, including 
the impact of the integrated bending predictions. The system’s low execution time enables real-time scheduling 
adjustments, offering a practical solution for production planning. These findings highlight the transformative 
potential of ML, particularly through such sequential predictive integration, in replacing outdated engineering 
heuristics and providing actionable insights for complex manufacturing environments.
1. Introduction

According to the Council (2024), a record 117 GW of new capacity 
was installed in 2023, marking the best year ever for new wind power. 
Furthermore, it was a year of continued global growth, with 54 coun-
tries across all continents contributing to the expansion of wind power. 
Spanish households will face significant electricity price increases in 
2025, driven by VAT adjustments and fixed cost hikes. The VAT (Value 
Added Tax) increased to 21% in January 2025, increased the temporary 
reductions implemented during the energy crisis in 2021 (Menendez-
Roche, 2025). Additionally, the ever-growing global energy demand 
has spurred technical development in the wind power industry, which 
has focused on increasing power output through better exploitation of 
wind currents.
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To achieve this, wind turbine manufacturers are exploring two main 
strategies: (a) raising turbines to higher altitudes, where wind currents 
are more consistent, and (b) using larger rotor blades to capture more 
wind energy. However, both approaches require larger and taller wind 
turbine towers, posing significant technical challenges. The manufac-
turing of these towers is already a complex, labour-intensive process, 
and the increasing size requirements further complicate operations and 
supply chain management.

In this context, enhancing the predictive capabilities of produc-
tion planning systems is fundamental, particularly in manufacturing 
environments characterized by high variability and strong operational 
interdependencies. Within any supply chain, the production system 
comprises a series of interdependent operations whose variability in 
execution and level of coordination directly affect overall efficiency 
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and delivery times. These operations often include both sequential and 
parallel activities, where delays or quality deviations in the early stages 
can propagate to subsequent ones, amplifying their impact in later 
phases.

In wind turbine tower manufacturing, sequential processes such 
as bending and longitudinal welding (LW) are particularly critical, 
and their inherent variability significantly impacts overall production 
planning. A review of the literature on lead time prediction using 
machine learning in manufacturing contexts reveals a predominant 
trend: most studies focus on modelling and predicting the lead time of 
individual processes in isolation (Bender et al., 2022; Flores-Huamán 
et al., 2024; Gyulai, Pfeiffer, Bergmann, & Gallina, 2018; Gyulai et al., 
2018; Kang et al., 2020; Lingitz et al., 2018; Lorenzo-Espejo et al., 
2022; Onaran & Yanı k, 2020; Pfeiffer et al., 2016). While such methods 
provide additional sorts of explanatory variables across different stages 
of the process, the dynamic integration of sequential predictive models 
– in which the output of a model for an earlier stage (e.g., bending), 
together with its associated uncertainty or error, is directly incorpo-
rated as input to improve predictions in a subsequent stage (such as 
longitudinal welding) – remains a significantly under-explored area.

In this regard, the work by Lorenzo-Espejo et al. (2024) stands 
out as one of the few efforts to explicitly model the sequential nature 
of production processes. Nevertheless, even in that study, advanced 
interpretability techniques were not employed to clarify the rationale 
behind the model’s predictions, an essential aspect for its effective 
adoption in industrial decision-making. Additionally, the absence of 
a systematic comparison with traditional approaches limits the abil-
ity to fully evaluate the tangible benefits of the proposed sequential 
modelling framework.

To address this gap and enhance the accuracy of lead time pre-
diction in sequential processes, this article presents a novel machine 
learning (ML) based system for estimating the lead times of bending 
and longitudinal welding operations in wind turbine tower manufactur-
ing. The effectiveness of the proposed approach is evaluated through 
a case study at a Spanish wind turbine tower manufacturing plant, 
utilizing production records collected between 2022 and 2024.

The main contribution and novelty of this work lie in its architecture 
of sequential prediction integration: a system is designed and imple-
mented where the predicted lead time from the bending process, as 
well as an estimate of its prediction error, can be employed as input 
features for the prediction model of the longitudinal welding process. 
The specific contributions of this study are:

• Development and evaluation of a sequentially integrated predic-
tive system: we propose and evaluate a framework in which ML 
models for consecutive processes are interconnected, allowing 
predictive information, not just historical data, to flow from early 
to later stages to improve overall estimation.

• Empirical evidence of improved downstream accuracy: we pro-
vide quantitative evidence that incorporating predictions from 
the bending model significantly enhances the accuracy of the 
longitudinal welding model. This improvement is observed both 
when compared to models that exclude this integrated predictive 
information and relative to traditional engineering estimation 
methods used at the studied plant.

• Interpretability analysis: we utilize SHAP (SHapley Additive Ex-
planations) to identify the most influential factors in LW pre-
dictions, including the specific impact of the integrated bending 
process predictions.

The system comprises two main ML regression models, one for each 
operation (bending and LW). These models are designed to capture 
complex, non-linear relationships between input variables, which tra-
ditional regression techniques often fail to identify. The bending model 
is fed with: historical lead time data for each process and its upstream 
operations; context information such as personnel, machines, and prod-
uct types; and quality control data for raw materials and semi-processed 
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parts. The LW model incorporates the output of the previous bending 
model along with additional relevant data. Additionally, we employ 
SHAP (SHapley Additive Explanations) to enhance model interpretabil-
ity, allowing us to identify key factors influencing lead time predictions 
and providing actionable insights for decision-making (Lundberg & Lee, 
2017).

The approach is assessed with different configurations of the LW 
ML regression model. These include using the predicted lead time 
values from the bending model, incorporating the prediction error, 
using only the actual bending lead time observations, and excluding 
any information about the bending lead time. The alternatives are 
compared and evaluated, with the goal of minimizing prediction errors 
for LW times, particularly aiming to improve the accuracy of extreme 
lead time values. Our results demonstrate that while bending lead time 
predictions exhibit moderate accuracy, incorporating them as inputs 
significantly improves LW lead time estimation. This highlights the im-
portance of leveraging upstream process data to enhance downstream 
predictions.

The remainder of this paper is structured as follows: Section 2 
presents a description of the wind turbine tower manufacturing process, 
along with the distinctive constraints and characteristics of its produc-
tion planning and control, as well as a brief review of the relevant 
literature. Section 3 details the proposed system and methodology, 
including data preprocessing, feature selection, and model implemen-
tation. Section 4 presents and discusses the results of applying the 
proposed approach to the case study of a Spanish wind turbine tower 
manufacturer, with a focus on model performance and interpretability. 
Section 5 provides a comprehensive discussion of these results, contex-
tualizing them with the existing literature, exploring their industrial 
implications and limitations, and proposing directions for future re-
search. Section 6 summarizes the conclusions of the study, highlighting 
the practical implications of our findings for production planning and 
control, and, finally, the references in this paper are listed.

2. Wind turbine tower manufacturing: Background and applica-
tions of machine learning

Wind turbines are large-scale devices that convert the kinetic energy 
of the wind into electrical energy. The most common types are installed 
either onshore or offshore and consist of four main components: the 
rotor, the generator, the yaw system, and the tower. The rotor spins 
due to the wind’s forces acting on its blades, and the kinetic energy 
from this motion is converted into electrical energy by the generator. 
The yaw system rotates the generator and rotor around a vertical axis 
to face the wind direction. Finally, the towers, which are the focus of 
this work, are steel structures that support the other three components.

Wind turbine towers are assembled on-site by joining large steel 
cylinders or conical frustums (sections) together. These sections are 
bolted to each other using flanges that have been previously attached 
to their top and bottom ends. The top flange of section n is bolted to 
the bottom flange of section n+1. Wind towers are composed of at least 
three sections: a bottom, a mid and a top section. When higher towers 
are required, more mid sections are installed.

These sections are built in wind tower manufacturing plants and 
transported to the wind-farm location. The sections are assembled in 
the plant using ferrules, smaller cylinders or conical frustums that 
are welded together. Previously, the ferrules are formed by bending 
steel plates into rings, which are then welded together to form a 
closed conical frustum or cylinder. The production process of a wind 
tower involves several stages, as shown in Fig.  1, which illustrates 
the different states of the tower assembly. Succinctly, the operations 
involved in the process are the following:

1. Plate cutting and bevelling: the plate cutting process involves 
cutting raw steel to obtain sheets of the required size to form 
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Fig. 1. Production process of a wind turbine tower, distinguishing between its various states.
the cylinders, using techniques such as plasma cutting or oxy-
fuel cutting. Then, the edges are bevelled at an angle other than 
90 degrees to ensure a stronger and higher-quality weld before 
joining the pieces.

2. Bending: rectangular steel plates are bent into cylinders or 
conical frustums.

3. LW: the edges of the bent plate are welded to one another in 
order to form a fully closed ferrule.

4. Flange fitting: flanges are fitted to the inferior and superior 
ferrules of the sections and given several weld spots so that they 
hold their position.

5. Ferrule fitting: the ferrules that compose a section are fitted to 
each other and given multiple weld spots to ensure that they 
hold their position.

6. Circular welding: the fitted ferrules and flanges are finally 
welded together, following the weld spots given in the fitting 
process.

7. Surface treatment: the sections then go through a series of 
processes that prepare the internal and external surfaces for the 
conditions they must endure during service.

A more exhaustive depiction of the wind turbine manufacturing 
processes and their recent advancements is provided by Sainz (2015). 
However, in this article the focus is set on the bending and LW 
processes. These two operations are amongst the most intricate of the 
manufacturing process. Firstly, they are the two initial major processes 
in the manufacturing system (for technical reasons). If, owing to the 
configuration of the system, any of these two operations constitute the 
bottleneck of the process, a great planning effort must be performed 
in order to ensure that there is a continuous flow in the corresponding 
workstations. In the case that this is not achieved, non-desirable idle 
times could be expected in the many posterior processes.

Also owing to the position of the processes in the workflow, re-
works due to major faults occurred during bending and LW are time-
consuming and costly. If a bending- or LW-related defect is identified 
in any of the downstream processes, the part must be carried back 
to the start of the production layout. This is not an easy endeavour, 
since, due to the size and weight of the parts, the layout is optimized 
in order to allow the process to be completed with as little movement 
of the part as possible but, evidently, in the natural flow of production. 
Adding to that commented above, bending and LW-related faults cause 
costly reworks also for the following reasons: firstly, in order to resume 
production of the impending tower as soon as possible (towers can 
deteriorate and deform inside the production line due to their weight), 
the faulty ferrule is assigned the highest priority at the bending or 
LW station. If a different model of ferrule is currently in production 
in the stations, a setup time for tool or configuration modifications 
can be expected. Furthermore, the defective ferrule cannot simply be 
replaced by another ferrule, as most of them have different product 
specifications and designs.

Moreover, if the defect is found after the fit-up process, the whole 
production of the tower must be set to a stop, since by then the ferrules 
are welded to one another. Of course, this also implies an extra rework 
time, as the defective ferrule must be separated from the rest of the 
tower.

Finally, minor defects, which are less frequently detected on time by 
employees, can significantly reduce the performance of the downstream 
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workstations. It must be borne in mind that the fit-up process unites 
two ferrules, which must match with very low tolerances in order to 
ensure the structural integrity of the tower. If a ferrule is not perfectly 
curved or if its lips do not come to a perfect union, the complexity of 
the fit-up process is severely increased. Additionally, the lead time for 
the circular welding process may increase, as larger welds are often 
needed to compensate for these imperfections.

2.1. Production planning and control in wind turbine tower manufacturing

Wind turbine tower manufacturing is a challenging production pro-
cess from a production and control standpoints, for several reasons: 
(a) the raw materials and products are voluminous and heavy; (b) as 
a consequence of the volume and weight of the parts, it is a mainly 
non-automated manufacturing process; (c) despite being a low-volume 
production process, there is a strong variability between client orders; 
and (d) in spite of the size of the parts produced, wind turbine towers 
are subject to very strict regulations and small tolerances.

In this context, recent research has explored advanced schedul-
ing methods for unrelated parallel machines, where processing times 
depend on both the machine and the job. A novel approach intro-
duces support machines, which, despite having reduced capacity, can 
perform partial tasks before transferring them to main machines for 
completion. Muñoz-Díaz et al. (2024) formulated a Mixed-Integer Lin-
ear Programming (MILP) model to optimize this problem and eval-
uated Tabu Search, Simulated Annealing, and a Constructive Heuris-
tic. Their results indicate that support machines can improve pro-
duction efficiency, with Tabu Search achieving the best performance, 
while the Constructive Heuristic offers a faster alternative for real-time 
applications.

However, the implementation of these advanced scheduling meth-
ods in wind turbine tower manufacturing faces significant obstacles 
due to the lack of sensorization and digitization in many plants. This 
challenge is also evident in the manufacturing plant studied in this pa-
per, where manual data collection has several implications for process 
planning and control. Firstly, a considerable amount of employee effort 
is required to record production data, which is often of poorer quality 
than sensor-generated data. The absence of a standardized protocol, or 
non-adherence to it, introduces bias and errors into the manufacturing 
records. It must be noted that workers often view data recording 
as a secondary task, sometimes performing it under less-than-ideal 
conditions.

In particular, the process lead time variable is likely the most 
affected by errors in manual recording. In the case of the plant studied 
in this paper, employees had to move from their workstations to fill in 
the completion time of a part and then return to their post to resume 
the operation. This led to them forgetting to fill in these records or 
even waiting until the end of their shift. Therefore, these circumstances 
undoubtedly affect the quality of the lead time data, which, in turn, 
has a significant effect on lead time forecasting accuracy. Simply using 
the averages of the lead times for these processes is bound to produce 
inaccurate predictions. Pérez-Cubero and Poler (2020) emphasized the 
importance of considering lead time variability in job-shop production 
scheduling. Thus, other determinant factors of the lead time must be 
utilized in order to generate precise estimations that, if good enough, 
may serve as input for the production planning and control of the 
manufacturing process.
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Accurate lead time predictions are particularly crucial for two 
main applications: job scheduling and anomaly control. Regarding 
job scheduling, if both efficient and attainable schedules are to be 
produced, it is essential that the lead times of each job are accurately 
represented. If the time slots allocated to a job are lengthier than 
what is actually needed, the workstation will most likely experience 
inefficient idle time. On the other hand, if the schedule includes less 
time than required to complete the process, upstream stock levels 
are likely to increase, and more importantly, there is a risk that 
product delivery dates will not be fulfilled. In addition, accurate lead 
time predictions can enable anomaly control systems in cases where 
sensor data (such as vibration, temperature, or noise records) are not 
available. In these instances, comparing the expected lead time with 
the actual processing time can serve as a warning of potential machine 
failures or defective parts.

2.2. ML applications to lead time prediction and wind power

A review of the production management literature reveals that 
there is only a limited number of works addressing the use of ma-
chine learning techniques for the prediction of process lead times. This 
stands in contrast to the more extensively studied problem of job-
shop scheduling (JSSP), where the application of machine learning, 
particularly reinforcement learning (RL) and deep learning (DL), has 
received significant academic attention (Pérez-Cubero & Poler, 2020). 
While JSSP focuses on optimizing the sequence of operations, our work 
addresses the prerequisite challenge of accurately estimating the dura-
tion of those operations, a critical input for any effective scheduling 
system. This highlights a practical gap in the literature that our research 
aims to fill.

Along these lines, Kang et al. (2020) produce a systematic literature 
review in which they identify quality-related problems as those most 
frequently approached using ML techniques out of other less researched 
managerial aspects regarding production lines, such as yield improve-
ment, preventive maintenance, waste management and, the topic of this 
article, lead time prediction. On their part, Bertolini et al. (2021) liter-
ature review of ML industrial applications does not even consider lead 
time prediction as a unique research topic inside production planning 
and control (PPC), but rather as an intermediate step of Performance 
Prediction and Optimization, Scheduling or Process Control solutions.

Usuga Cadavid et al. (2020) present an exhaustive literature review 
of industrial applications of ML-aided production planning and control 
(ML-PPC). The authors identify ‘‘time estimation’’ as an additional use 
case of ML-PPC, which was not previously considered in the revision 
of data-driven smart manufacturing applications made by Tao et al. 
(2018) .

Burggräf et al. (2020) conduct a systematic literature review of 
the approaches to lead time estimation in Engineer-To-Order (ETO) 
environments. The authors find that, in the sample of academic works 
used in their review, material and employee-related data are seldom 
used to produce the predictions: 5% and 0% of the 42 studies that they 
analyse include material and employee-related data, respectively.

Most of the articles found on this research line focus on completion 
time estimation (Alenezi et al., 2008; Backus et al., 2006; Kramer 
et al., 2020; Öztürk et al., 2006; Ruschel et al., 2021; Wang & Jiang, 
2019). This trend is understandable, as the completion or total lead 
time, which in a manufacturing environment can be thought of as 
the interval between the arrival of a part and the fulfilment of all 
the operations required in its manufacturing specifications, is a key 
performance metric for many companies. This is particularly true in 
Make-To-Order (MTO) systems, as delivery dates must be previously 
agreed upon and then fulfilled to maintain customer satisfaction, trust, 
and loyalty. This also applies to resource-sharing departments and 
entities (Szaller & Kádár, 2021).

Several different approaches have been used to address completion 
time prediction through ML. They mostly vary in the methods and data 
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sources used to generate the estimations. Mohsen et al. (2022) utilize 
diverse ML algorithms, namely linear regression, K-nearest neighbour, 
random forest and neural networks, to estimate the cycle time of 
an industrialized building manufacturer, using three groups of input 
variables: product specifications, real-time tracking data using RFID 
acquisition technologies and engineered features representing work-
load conditions. Modesti et al. (2022) compare the performance of 
empirical methods and artificial neural networks at the prediction 
of manufacturing flowtimes and completion due dates in job-shop 
settings.

Instead of focusing on manufacturing lead times, Steinberg et al. 
(2022) predict the possibility of manufactured parts experiencing de-
lays at their arrival at an assembly station in an MTO environment. 
The authors evaluate six different ML models for classification with and 
without a set of variables corresponding to the design of the material. 
They conclude that the performance of the models with the material-
related information is higher, but by a relatively low margin. This fact 
is attributed by the authors to the scarce variability of material designs. 
Along these lines, Lim et al. (2019) utilize Support Vector Machines to 
address completion time prediction as a classification task, discretizing 
lead time into multiple classes.

In comparison to completion time prediction, forecasting the lead 
times of individual processes adds the complexity of a lesser number 
of data sources from which to draw useful knowledge. In this article, 
this obstacle is tackled by gathering data from previous processes and 
connecting the prediction modules of sequential processes.

Other authors go a step beyond the completion time, focusing on 
transition or waiting times, which are, essentially, the periods that 
a part spends waiting or being transported between processes. For 
example, Schuh et al. (2018) posit a framework for the determination 
of transition times using data mining techniques with the goal of 
improving the adherence to delivery dates. According to the authors, 
transition times are often the cause of unsatisfied delivery times due 
to the lack of standardization, their high variability, and the simplifi-
cation of its calculation. Additionally, Schuh, Gützlaff, Sauermann, and 
Theunissen (2020) present an approach to transition time prediction us-
ing time series data mining (TSDM), combining product specifications 
and organizational variables with historical data. Similarly, Gützlaff, 
Sauermann, Kaul, and Klein (2020), Schuh et al. (2019) utilize Re-
gression Trees and Random Forests to forecast transition times, also 
determining the influence of several production-knowledge variables 
on the predictive power of the models.

Recently, the prediction of specific process lead time has started 
to gain attention from researchers. Unlike completion time prediction, 
being able to estimate the lead times of one or multiple processes 
can be directly applied to production planning and control and to 
scheduling. Along these lines, Gyulai, Pfeiffer, Bergmann, and Gallina 
(2018) develop a data analytics system that implements what they coin 
as ‘‘situation aware’’ production control. In their system, a closed-loop 
control is used to provide online updates for a digital data twin Gyulai 
et al. (2018). The digital twin is supported by process lead time pre-
dictions conducted using ML algorithms, which, according to Pfeiffer 
et al. (2016) and Lingitz et al. (2018), outperform traditional analytical 
techniques. Specifically, in the case study in which these works are 
supported (a semiconductor manufacturing process), the random forest 
method stands out among other algorithms for its performance. The 
system proposed by the authors is focused on real-time control of 
the lead times by using information about dynamic events occurring 
simultaneously (as well as product-specific data). Instead, the system 
proposed in this article focuses on short-term prediction, as the input 
variables are set in advance. Depending on the variables chosen for the 
model, which are discussed later in the article, the lead time predictions 
can be produced with varying levels of anticipation.

Bender et al. (2022) present two practical cases of application 
of three different automated ML (AutoML) frameworks and compare 
them to simple lead time prediction approaches used in the enterprises 
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under study. AutoML aims to automate the complete ML pipeline, 
from data preprocessing to deployment. The authors address two Make-
To-Order (MTO) manufacturing processes composed of many opera-
tions, for which they estimate the distinct process, but the results 
are shown aggregated in their study. The authors employ product 
and organizational-related variables as predictors, and the proposed 
systems only outperform the simple mean-based predictions in one of 
the two companies. While Bender, Trat and Ovtcharova endorse the 
value of AutoML, they highlight the need for holistic solutions that are 
able to fully support users in labour-intensive processes such as data 
understanding, transformation, filtering, preprocessing and feature en-
gineering. Bender and Ovtcharova (2021) also present a prototype that 
integrates an Enterprise Resource Planner (ERP) to provide data, the 
AutoML software to produce lead time predictions and a Manufacturing 
Execution System (MES) to control the operation in the plant. Sousa 
et al. (2022) also utilize AutoML packages, but for order completion 
time prediction.

Zhu and Woo (2021) combine a new self-organizing hierarchical 
particle swarm algorithm (PSO) with a Support Vector Machine (SVM) 
prediction model in order to forecast the lead times of two production 
processes in the shipbuilding industry. Rizzuto et al. (2021) present 
a case study of the application of multiple ML models to predict the 
lead times of the tooling, placing and execution operations in a drilling 
factory. The results show that the random forest algorithm outperforms 
the rest of the methods used in their comparison for each of the three 
operations.

Finally, Onaran and Yanı k (2020) utilize the Multilayer Perceptron, 
one of the most frequently used neural networks, to predict the lead 
time of a manual-labour-intensive operation in a textile-manufacturer’s 
production line. The authors employ product and order-related vari-
ables, as well as employee data and a measure of the efficiency of the 
complete line.

The studies mentioned above all present different systems or ap-
proaches to the prediction of the lead times of specific processes. 
However, their proposals do not collate the times of the operations with 
each other to evaluate potential improvements in the predictions, as 
posited in this article. Furthermore, another contribution of this article, 
based on the review of the extant literature, is utilizing the predictions 
of the lead times of a process to feed other process prediction systems.

Concerning the use case of the proposed prediction system, it must 
be noted that wind power has received significant research attention, 
but not regarding its manufacturing stage. A review of the litera-
ture presenting ML approaches to wind power settings reveals that 
most studies address the operational stage of wind power. Three main 
research fields can be identified in the literature:

• Smart maintenance systems for wind turbines, specifically
condition-based monitoring. The three most common research 
lines on this topic are anomaly detection (Helbing & Ritter, 2018), 
fault classification (Gao et al., 2021) and remaining useful life 
(RUL) estimation (Carroll et al., 2019) – see Stetco et al. (2019) 
for an exhaustive review on this topic.

• Expert systems for wind turbine and wind farm design and con-
trol (Fischetti & Fraccaro, 2019; Petrov & Wessling, 2015).

• Prediction of power output, which can be based on multiple dif-
ferent input variables, such as historical output records (Treiber 
et al., 2016) or wind and weather conditions (Kim & Hur, 2021).

Noticeably, the only works that address wind turbines from a man-
ufacturing standpoint are those by Sainz (2015), who describes the 
manufacturing process and several improvement steps based on an in-
creased automation; Park (2018), who analyses composite wind turbine 
towers from a design and manufacturing standpoint; and Lorenzo-
Espejo et al. (2022). In the latter, a machine learning-based approach to 
the bending process of wind turbine tower manufacturing is conducted, 
which highlights the influence of worker experience and age, given the 
manual character of the operation.
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In addition, Flores-Huamán et al. (2024) present a machine learning-
based approach to predict lead times for different operations in wind 
tower manufacturing. Their study, based on data collected from facili-
ties in Spain and Brazil, evaluates nine regression algorithms, including 
Random Forest, XGBoost and LightGBM, as well as deep learning mod-
els such as TabNet and NODE. The results indicate that models based 
on Gradient Boosting are the most effective in predicting processing 
times and optimizing resource allocation, highlighting the importance 
of integrating ML into production planning in the wind tower industry.

Similarly, Rocha-Jácome et al. (2025) propose a non-contact mea-
surement system using LiDAR sensors and ML techniques to predict 
geometric parameters in large-scale industrial components, specifically 
in wind tower manufacturing. Their approach combines geometric 
analysis with digital filtering and ML models to improve the accuracy 
of curvature radius measurements. Their results validate the system’s 
effectiveness in real production environments, emphasizing its potential 
for optimizing manufacturing processes through ML.

Recent advancements in lead time prediction for manufacturing 
processes have been explored by Lorenzo-Espejo et al. (2024), who 
developed a machine learning-based system for predicting lead times 
in wind turbine tower manufacturing. Their system utilized sequen-
tial process data and achieved notable improvements in prediction 
accuracy, particularly for the longitudinal welding process. However, 
their approach faced limitations in the accuracy of bending process 
predictions, which showed moderate performance due to the high vari-
ability and manual nature of the operation. Additionally, while their 
system provided valuable insights, it lacked advanced interpretability 
techniques to explain the model’s predictions, which is crucial for 
decision-making in industrial settings.

In this study, we build upon these developments by utilizing a 
different dataset, collected from a more recent production period 
(2022–2024), which includes updated operational parameters and a 
larger sample size. This allows us to validate and extend their findings 
under current production conditions. Unlike the previous work, which 
primarily relied on GB for predictions, we explored a broader range 
of machine learning approaches, including XGBoost, LightGBM, and 
neural network architectures such as MLP. This broader evaluation 
enables us to identify the most effective model for each process, 
significantly improving the accuracy of bending predictions, which was 
a key limitation in the previous study.

Furthermore, we address the lack of interpretability in the previ-
ous system by incorporating SHAP analysis. This technique provides 
detailed insights into the contribution of each input variable to the 
predictions, allowing production managers to understand the factors 
driving lead times and make more informed decisions.

These enhancements not only lead to more robust and accurate 
predictions but also provide actionable insights for production planning 
and control, particularly in optimizing resource allocation and identi-
fying potential anomalies in the manufacturing process. By integrating 
these improvements, our system represents a significant advancement 
over the previous approach, offering a more comprehensive and in-
terpretable solution for lead time prediction in wind turbine tower 
manufacturing.

Apart from the cited studies, no other contributions on wind turbine 
manufacturing and ML applications to such process are found in the 
literature.

3. Methodology

The methodology followed in this study is presented in this section. 
For conciseness, the steps are directly outlined as applied to the case 
study at hand. In particular, the system shown includes the bending 
and LW processes. However, the conceptual design of the system is 
applicable to any sequence of manufacturing processes, provided that 
a correlation between their lead times is expected. There are five 
main steps in the proposed regression analysis: data gathering; ex-
ploratory data analysis; data preprocessing; system design; and model 
implementation.
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3.1. Data gathering

In this study, data are gathered from the manufacturing of nearly 
900 tower sections produced between 2022 and 2024, each consisting 
of over 7,300 ferrules. The data are collected using the company’s 
ERP (Enterprise Resource Planning) and QMS (Quality Management 
System) databases, capturing various aspects of the production process. 
To create a comprehensive dataset for analysis, information from these 
databases is carefully integrated. This collation process ensures that 
the final database encompasses the necessary variables for further 
exploration and study.

The data collection pipeline relies on manual entry by plant op-
erators into the ERP and QMS systems at the conclusion of each 
manufacturing operation (e.g., bending, welding). This introduces a 
variable time lag between the actual completion of a task and its 
digital registration, typically ranging from a few hours to the end of a 
work shift. Consequently, the data frequency is tied to the completion 
rate of individual ferrules rather than a fixed time interval. While 
this process provides essential operational data, its manual nature is 
a known source of potential inaccuracies and delays, a challenge that 
this study’s modelling approach is designed to accommodate.

The explanatory variables are selected based on an initial data 
exploration phase and subsequent discussions with plant personnel, 
aimed at identifying the factors that potentially influence operation 
completion times. This selection process results in the classification of 
variables into four main categories: historical lead time records from 
upstream processes, contextual information, quality control reports, 
and predictions generated by machine learning regression models.

Within these categories, the inclusion of specific contextual vari-
ables
–such as product specifications (e.g., nominal thickness, plate dimen-
sions) and organizational attributes like the personnel assigned to the 
immediate process–is grounded in prior research on manufacturing 
lead times (Flores-Huamán et al., 2024; Lorenzo-Espejo et al., 2022). 
However, this study offers several novel contributions regarding the 
variables posited as potential determinants of process lead time:

• Explicit incorporation of historical lead time records from mul-
tiple upstream processes (e.g., sheet cutting, bevelling, bevel 
cleaning) as direct predictors of downstream operations (bending 
and longitudinal welding). While the influence of the immediately 
preceding step is sometimes considered in existing models, our 
approach systematically integrates a broader set of upstream 
performance data.

• Extension of organizational variables – including operator and 
machine identifiers – to also cover upstream processes. This is 
particularly innovative, as traditional models typically restrict 
input data to the process whose lead time is being predicted. 
Our rationale is that specific personnel or equipment used during 
upstream stages, such as bevelling, may directly affect the quality 
and characteristics of the intermediate product, thus influencing 
the lead time of subsequent processes like bending and welding. 
This allows us to capture critical inter-process dependencies that 
are often overlooked.

• Comprehensive integration of quality control reports from various 
inspection points, enabling the linkage of specific quality metrics 
to lead time variability.

The first three categories of variables are described in detail below. 
The fourth category consists of predictions generated by machine learn-
ing models trained on the bending stage, which are then used as inputs 
for predicting longitudinal welding times. This approach represents a 
key architectural innovation and is discussed in Section 4.
6 
3.1.1. Historical lead time records of up-stream processes
The lead times of processes taking place before the bending and LW 

operations may serve as contributing predictors of the corresponding 
bending and LW process times. There are three main processes that 
precede the bending operation: sheet cutting, bevelling and bevel clean-
ing. There are not further significant operations between the bending 
and LW processes. Three hypotheses that could explain the potential 
correlation between an operation and its preceding processes can be 
posited: (a) since the dimensions of the parts are expected to greatly in-
fluence the lead time of the processes, it should be expected that taking 
longer to process a part at the, for example, bevelling station, could be 
correlated with a longer bending lead time; (b) long process times may 
be indicators of production anomalies or defective units/equipment. If 
undetected, these could extend downstream, increasing the lead times 
of coming processes; and (c) on the other hand, excessively short 
process times may be indicators of a poor-quality work. While this may 
not result in immediate defective units, it can show later along the 
production process. Therefore, while it is difficult to pinpoint a specific 
reason a priori, the correlation between the lead times of different 
processes seems reasonable and worth studying.

3.1.2. Context information
As previously discussed, when accurate sensor-based data are un-

available and the only information available is that recorded manually 
by the workers, it can be ill-advised to rely simply on historical lead 
times for the prediction. However, there are other variables referring 
to aspects of the process that are usually set in advance and involve less 
uncertainty. This category of variables is again split into two groups: 
product specifications and organizational variables. There are eight 
variables related to the product specifications a priori relevant to the 
lead time:

• The position of the section that contains the processed ferrule in 
the tower, a numeric variable ranging from 1 (bottom section) to 
6 (highest section produced).

• The position of the ferrule in the section in which it is to be 
included, a numeric variable which can take a value from 1 
(bottom ferrule of the section) to 16 (highest ferrule position).

• The yield strength of the steel with which the plate was manufac-
tured, for a nominal thickness of 16 mm or less (355 N/mm2 or 
455 N/mm2).

• The toughness subgrade of the steel with which the plate was 
formed, measured with the Charpy test (JR: 27 J of impact 
strength at 20 ◦ C; J0: 27 J at 0 ◦ C; J2: 27 J at −20 ◦ C; NL: 
27 J at −50 ◦ C; and K2: 40 J at −20 ◦ C).

• Whether the steel plate has received a normalization treatment in 
order to increase its toughness or not.

• Nominal thickness, length, and width of the plate.
These variables are common for every process since they refer to 

product specifications. On the other hand, the organizational variables, 
the personnel, and machine variables, are particular to each of the 
processes. In a previous analysis (Lorenzo-Espejo et al., 2022), the 
bending lead time has been found to be significantly affected by which 
worker performed the operation. Therefore, it seems reasonable that 
the personnel and machine variables could also impact the lead times of 
the downstream operations. Thus, the models include this information 
not only for the bending and LW operations but also for the sheet 
cutting, bevelling, and bevel cleaning discussed above.

3.1.3. Quality control reports
The QMS module of the system provides information regarding 

the several quality inspections performed throughout the process. The 
quality reports available when the parts reach the bending and LW pro-
cesses refer to the sheet inspections made at the receiving warehouse 
and after the sheet cutting, bevelling and bevel cleaning operations are 
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Fig. 2. Histogram of bending lead time.

Fig. 3. Histogram of longitudinal welding lead time.

completed. The variables recorded in these quality inspections refer 
mostly to additional measures of the dimensions of the sheets. These are 
far more detailed and accurate than the nominal dimensions obtained 
from the ERP system. Furthermore, the conformity of the bevels with 
the product specifications is checked, as well as the sheet dimensions 
after the cutting and bevelling processes.

3.2. Exploratory data analysis

Following data gathering, an exploratory data analysis is conducted 
to understand the underlying data distributions and the explanatory 
power of selected variables in estimating manufacturing lead times. The 
analysis focuses on the characteristics of the target variables (Bending 
and LW lead times) and their relationship with key process and product 
features.

3.2.1. Lead time distribution analysis
Figs.  2 and 3 illustrate the distribution of lead times for the bend-

ing and longitudinal welding operations. As shown in the figures, 
both processes exhibit a right-skewed distribution, indicating that most 
operations are completed in a relatively short time, but there is a non-
negligible proportion of cases where the required time is significantly 
longer. This asymmetry may be associated with variability in sheet 
thickness, process interruptions, or operational inefficiencies.
7 
Fig. 4. Pearson correlation matrix for the bending process. The analysis includes only 
the most relevant numerical attributes affecting bending lead time, such as product 
specifications and upstream durations.

3.2.2. Correlation and feature importance analysis
To assess the initial predictive power of the numerical features, 

Pearson correlation matrices are computed for both the Bending and 
Longitudinal Welding (LW) processes, as shown in Figs.  4 and 5. This 
analysis is structured to mirror our sequential modelling approach: the 
first matrix examines the Bending process in isolation, while the second 
incorporates predictive features from the Bending stage to analyse their 
impact on the subsequent LW process. For clarity, both visualizations 
focus on a curated set of the most relevant numerical features identified 
through preliminary analysis and domain knowledge.

The correlation analysis for the Bending process, presented in Fig. 
4, reveals that the strongest correlation is observed with the bevelling 
time (bis), with a value of 0.37, followed by sheet cutting time (coc) 
with a correlation of 0.18. This suggests that the duration of upstream 
operations directly influences the complexity and time required for the 
bending task.

Positive correlations are also found with material properties such as 
sheet thickness (0.15) and sheet length (0.088). These results indicate 
that bending time is affected not only by upstream operations but 
also by the geometric characteristics of the raw material. In contrast, 
features related to workforce allocation, bevel cleaning, or sheet width 
show very low or even negative correlations, implying a limited or 
negligible impact on bending lead time.

The correlation analysis for the longitudinal welding process (Fig. 
5) shows that sheet thickness has the highest correlation with total 
lead time, with a value of 0.70. This suggests that thicker sheets 
generally require longer processing times, which is consistent with the 
operational logic of industrial processes.

In addition to material properties, the analysis confirms the value of 
incorporating data from the preceding stage. Upstream process times, 
such as bevelling, sheet cutting, and the historical bending-time itself, 
all show moderate positive correlations with the LW lead time. This 
demonstrates that the outcomes of prior operations have a cascading 
effect on subsequent tasks. In contrast, features like bevel cleaning 
(lib) and the number of assigned personnel show near-zero correlations, 
indicating a limited direct linear impact on the total welding time 
within this dataset.

3.2.3. Impact of human factors on process performance
Given the significant manual component of the operations, the 

influence of operator experience is analysed separately for each process. 
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Fig. 5. Pearson correlation matrix for the longitudinal welding process. In addition 
to welding-specific features, this analysis incorporates attributes from the preceding 
bending process to capture potential interdependencies.

Using the total number of recorded operations as a proxy for experi-
ence, operators are categorized into ‘Experienced’ (> 500 operations), 
‘Regular’ (100–500 operations), and ‘Occasional’ (<100 operations). 
Figs.  6 and 7 illustrate the resulting lead time distributions for the 
Bending and Longitudinal Welding processes, respectively.

Fig.  6 reveals a clear relationship between operator experience and 
performance in the bending process. ’Occasional’ operators exhibit a 
higher median lead time (approx. 1.8 h) and, more significantly, much 
greater variability, as shown by the taller box and wider whisker range. 
This indicates a less predictable performance. In contrast, ’Regular’ 
and ’Experienced’ operators show a lower median time (approx. 1.5 h) 
and exceptional consistency. However, the most critical insight comes 
from the high frequency of outliers in these experienced groups. Given 
that the task is identical for all, these outliers do not represent more 
complex assignments. Instead, they likely represent the ’hidden work’ 
of troubleshooting. When faced with a process disruption, experienced 
operators are expected to diagnose and resolve the issue, with this 
time being captured in their lead time. Less experienced operators, by 
contrast, would typically escalate the problem, thus externalizing the 
resolution time.

The analysis of the longitudinal welding process, shown in Fig. 
7, strongly corroborates these findings. The same pattern emerges: 
’Occasional’ operators are slightly slower and less consistent, while 
’Regular’ and ’Experienced’ operators perform at a higher and more 
predictable level. Crucially, the paradoxical pattern of outliers is also 
present, with the most experienced groups showing a much higher 
incidence of exceptionally long cycle times. This consistency across two 
different processes reinforces the hypothesis that these outliers are not 
indicators of inefficiency but are quantitative evidence of the additional 
responsibilities–such as on-the-spot problem-solving–handled by senior 
operators.

3.3. Data preprocessing

A significant challenge in this stage is ensuring the consistency 
and quality of the data. The information regarding lead times and 
machine usage, was manually entered by plant workers at the end of 
each operation. As a result, the data are susceptible to human error 
and missing values, which could negatively impact their quality. To 
mitigate these issues, a rigorous data preprocessing is applied. This 
8 
Fig. 6. Box Plot of lead times for the bending process, segmented by operator 
experience. The y-axis has been limited to the range [0, 5] hours to facilitate visual 
comparison.

Fig. 7. Box Plot of lead times for the longitudinal welding process across experience 
levels. The y-axis has been limited to the range [0, 7] hours to facilitate visual 
comparison.

includes the treatment of outliers, normalization, and the creation of 
composite variables, all of which help to improve the reliability and 
usefulness of the dataset for its subsequent use in machine learning 
models.

3.3.1. Data cleaning
In the data cleaning phase, which aims to enhance data quality 

through various techniques, the first step involves removing any du-
plicate elements. Subsequently, outliers in process delivery times are 
addressed, as some recorded values are unrealistic. For instance, a 
bending process was recorded as taking only 10 s, which is physically 
impossible for a human operator. Since such values do not reflect actual 
variability in the process, they are classified as outliers. To determine 
the threshold beyond which a value would be considered an outlier, 
the Isolation Forest algorithm, a widely used method for anomaly 
detection, is applied.

This algorithm focuses on isolating anomalies rather than modelling 
normal instances. It leverages the quantitative properties of anomalies, 
which are ‘‘few and different’’, making them more susceptible to iso-
lation compared to normal data points. The algorithm constructs a set 
of isolation trees (iTrees) that recursively isolate instances. Anomalies 
tend to be separated closer to the root of the tree, whereas normal 
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Table 1
Ranges of non-outliers’ values identified using the isolation forest algorithm for the 
bending and longitudinal welding.
 Operation Minimum (Non-outlier) Maximum (Non-outlier) 
 Bending 0.9229 h 2.140 h  
 Longitudinal Welding 0.7163 h 1.771 h  

Table 2
Dimensionality expansion after one-hot encoding.
 Dataset Initial attributes Final attributes New attributes added 
 Bending 29 114 85  
 LW 32 128 96  

points are isolated at deeper levels. This approach enables efficient 
anomaly detection with linear time complexity and low memory re-
quirements, making it well-suited for large-scale datasets (Liu et al., 
2008).

The ranges considered as non-outliers are presented in Table  1. 
Additionally, the following percentages of values are identified as 
outliers:

• Bending dataset: 5.58% of values are below 0.9229 h, and 9.56% 
of values are above 2.140 h.

• Longitudinal Welding dataset: 4.75% of values are below
0.7163 h, and 11.97% of values are above 1.771 h.

Once the percentages are found, values above the maximum are 
retained because they represent errors that can occur in production, 
and therefore, they may help prepare the models for anomalous cases. 
However, in the case of the minimum values, it has been decided to 
eliminate them because they were deemed unrepresentative of typical 
production conditions and could potentially introduce bias or distort 
the model’s ability to generalize to real-world scenarios. Regarding 
missing values, these are imputed using the mean (numeric variables) 
or the mode (nominal variables). It must be noted that most of the 
variables missing a significant percentage of data are quality control 
variables.

3.3.2. Data transform
The data transformation phase focuses on preparing the dataset 

for machine learning models by addressing differences in scale and 
converting categorical variables into numerical formats. Numerical 
data are scaled using the Standard Scaler method, which standardizes 
features by centring them around a mean of zero and a standard devi-
ation of one, ensuring a consistent scale that is particularly beneficial 
for models sensitive to data magnitudes, such as neural networks and 
support vector machines.

For categorical variables, the One-Hot Encoding technique was 
applied, creating binary columns for each category to represent its 
presence or absence. This approach avoids imposing any ordinal re-
lationships between categories, ensuring compatibility with machine 
learning algorithms while managing the resulting increase in dimen-
sionality. As shown in Table  2, one-hot encoding significantly increases 
the dimensionality of the datasets: the bending dataset expands from 29 
to 114 attributes (adding 85 columns), while the longitudinal welding 
dataset grows from 32 to 128 attributes (96 new columns). Given the 
final sample sizes after data cleaning, the feature-to-instance ratio re-
mains sufficiently low to avoid the problem of dimensionality, ensuring 
robust model training.

3.3.3. Feature selection
Feature selection is the process of identifying the most relevant 

and representative variables in a dataset to enhance precision and 
efficiency. It is a crucial step in data preprocessing, aimed at reducing 
dimensionality by eliminating uninformative or noisy features. In this 
9 
study, many quality-related features are removed, as 99% of the values 
in those columns are null, likely due to the limited number of tests 
conducted on that characteristic. Consequently, all columns with more 
than 35% null values are excluded to improve data reliability and 
model performance.

3.4. System design

The proposed system, illustrated in Fig.  8, extracts data from two 
primary sources: the ERP system and the QM system. The ERP system 
provides historical lead time records of upstream processes, contex-
tual information, and the dependent variables–the bending lead time 
(LT) and longitudinal welding (LW) lead time. Meanwhile, the QM 
system contributes data from quality inspection reports, including raw 
materials and process-related quality data. Both datasets undergo a 
preprocessing phase, where data are cleaned, encoded for compatibility 
with machine learning models, and subjected to a feature selection 
process to retain the most relevant variables.

Once preprocessed, the data are used to train machine learning 
regression models, with one model dedicated to each operation. With 
this setup, two independent forecasting systems could be created. How-
ever, by linking the bending LT and LW LT prediction modules, a more 
integrated forecasting system is achieved. This approach follows the 
same rationale as the inclusion of lead times from previous processes 
such as sheet cutting, bevelling, and bevel cleaning. The integration 
is particularly relevant due to the expected high correlation between 
the bending quality and the LW process lead time. Specifically, if poor-
quality bending causes misalignment in the sheet edges that are to be 
welded, the LW process can be significantly delayed.

The system is structured into two main stages: training and eval-
uation, followed by deployment in production. In the training and 
evaluation stage, separate machine learning models are developed for 
predicting bending LT and LW LT. This process involves hyperparam-
eter tuning, model selection, and model evaluation to identify the 
most effective model for each task. In the case of the bending LT 
prediction model, different configurations are tested, including using 
only historical data, incorporating predicted values of bending LT, and 
considering the prediction error as an additional feature. The LW LT 
model, in turn, integrates the outputs from the bending LT model to 
improve its predictive accuracy. The best models are selected based on 
their performance, and a SHAP value analysis is conducted to interpret 
the contribution of different input variables.

Once trained, the models are deployed in the production stage to 
generate real-time lead time predictions. The bending LT prediction 
model produces an estimate, which, along with historical or predicted 
values, is used as input for the LW LT prediction model. The output 
of the LW LT model is then fed into the production planning and 
control module, where it assists in optimizing job scheduling and 
anomaly detection. The bending LT prediction module generates two 
key outputs: the bending lead time prediction and the actual bending 
lead time, from which the prediction error can be computed. These 
outputs enable different configurations for linking the bending and LW 
LT models, and the system’s performance under these various setups is 
tested to determine the most effective configuration.

Finally, the predictions obtained with these models serve as inputs 
for other production planning and control systems, supporting job 
scheduling and anomaly detection. The comparative results of different 
system configurations and their impact on predictive performance are 
discussed in Section 4.

3.5. Lead time prediction modules implementation

As described in the previous subsection, the proposed system inte-
grates two lead time prediction modules based on regression models, 
one for the bending process and another for the longitudinal welding 
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Fig. 8. System design diagram.
process. Both share a structured methodology that includes data par-
titioning, model selection, and hyperparameter tuning. However, the 
LW module has a particular feature: it can incorporate not only the 
actual bending lead time but also its estimated values and associated 
errors, allowing for the evaluation of different input configurations. The 
following section details the methodology used for the implementation 
of each module.

3.5.1. Bending module
First, the models were trained and evaluated without adjusting 

any hyperparameters, to use them as baseline models for comparison 
with those where hyperparameters are tuned. The bending dataset is 
divided into a training and validation set and a test set following the 
holdout method. Specifically, 20% of the instances in the dataset are 
randomly selected to form the test set, ensuring that these instances 
are not used during training or validation. This is essential to guarantee 
that the model performance metrics accurately reflect its generalization 
capability once deployed in production. The criterion to select a model 
is the minimization of the average across the five iterations of the Root 
Mean Square Error (RMSE) metric, which can be calculated as follows:

RMSE =

√

∑𝑁
𝑖=1 |𝑦(𝑖) − 𝑦̂(𝑖)|2

𝑁
where 𝑁 is the number of instances in the test set, 𝑦(𝑖) is the 𝑖th 
observation, and 𝑦̂(𝑖) is its corresponding prediction. By squaring the 
residuals, this metric penalizes the larger errors more severely than 
others such as the Mean Absolute Error (MAE). This is particularly 
desirable for the bending lead time prediction module, the output of 
which will be employed in the forecast of the LW lead time. Thus, the 
model should perform well with extreme instances in order to pass any 
learnt information to the subsequent module.

For the implementation of the lead time prediction modules, ten 
regression models are evaluated, organized into different families. First, 
linear, and regularized regression models, such as Ridge, Lasso, and 
Elastic Net (ENET), are included. These models assume a linear re-
lationship between variables and apply regularization to avoid over-
fitting, making them useful in problems with high collinearity. Next, 
Support Vector Regression (SVR), an extension of Support Vector Ma-
chines (SVM) for regression tasks, is evaluated. SVR captures non-linear 
relationships through the use of kernel functions, which implicitly map 
data into higher-dimensional feature spaces. This makes it particularly 
effective for small datasets and problems with high-dimensional feature 
spaces.
10 
Regarding tree-based models, they are divided into individual trees, 
such as Decision Tree Regressor (DT), which recursively partitions the 
feature space, and ensemble tree methods, such as Random Forest (RF), 
Gradient Boosting (GB), LightGBM (LGBM), and XGBoost (XGB). The 
latter combine multiple trees to improve performance and balance bias 
and variance. Boosting methods build trees sequentially, correcting the 
errors of the previous ones.

Finally, models based on artificial neural networks are included, 
such as MLP Regressor, which uses a fully connected neural network 
to model complex relationships.

Once the correct functioning of the base models is verified, Ran-
dom Search optimization combined with cross-validation is applied 
to fine-tune their hyperparameters and improve performance. This 
technique is selected due to its balance between efficiency and sim-
plicity, outperforming Grid Search by avoiding exhaustive exploration 
of large hyperparameter spaces (Bergstra & Bengio, 2012) and being 
less computationally expensive than Bayesian Optimization while still 
achieving competitive results. The specific hyperparameters used in 
each algorithm are detailed in the Appendix  A.

After that, the tuned model is finalized by training it on the full 
training and validation dataset, and is used to predict the bending lead 
time for the instances in the test set. If the accuracy of these predictions 
is acceptable, the model is retrained with the full dataset and deployed 
for production. This would conclude the process in the bending lead 
time prediction module.

However, if the predictions or prediction errors of the bending lead 
time are to be used in the LW lead time forecasting module, predicted 
bending lead time values are needed for as many instances in the 
dataset as possible. To do so, the dataset containing the historical 
bending lead time records and the corresponding independent variables 
is split into four subsets with the same number of instances. Four 
iterations of the ML algorithm are executed. Each one of them uses 
three subsets as training data. The instances in the remaining one are 
used to generate the bending lead time predictions. After completing 
the four iterations, all instances in the dataset contain an actual bending 
lead time value, a prediction, and the prediction error. This way, each 
of these values can be fed to the LW module.

3.5.2. Longitudinal welding module
Regarding the prediction of the LW lead time, the dataset is equally 

divided into a random 80%–20% training-test split. Again, a five-fold 
cross-validation analysis must be performed in order to identify the 
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Table 3
Hardware and software specifications used in the experiment.
 Component Details  
 CPU Intel Core i9-12900K, 16 cores  
 RAM 32 GB  
 Operative System Windows 11  
 Programming Language Python 3.10  
 Packages numpy (Charles et al., 2020), pandas (McKinney, 2010), 
 matplotlib (Hunter, 2007), seaborn (Waskom, 2021),  
 scikit-learn (Pedregosa et al., 2011)  
 IDE VS Code  

optimal regression model, also with the goal of minimizing the RMSE. 
The same candidate models as in the bending lead time prediction 
module have been used. This is done for each of the configurations of 
input variables that can be used. As a reminder, the input variables 
can be classified into four categories: lead time records of the up-
stream processes, context information, quality control reports and ML 
regression model predictions. The variables of the first three groups are 
included in all of the configurations, which vary from one another with 
the inclusion of the actual bending lead time values, the predictions of 
such, the error of the predictions, the absolute error of the predictions 
and combinations of the above.

Finally, the selected model from each configuration is tuned using 
an analogous hyperparameter Random search and trained with the 
entirety of the training and validation dataset. The trained model is 
then used to produce predictions for the instances in the test set. If the 
results of the evaluation are acceptable, the model is retrained using 
the complete dataset and deployed for production.

4. Experimental results

In this section, the results obtained using the methodology for 
predicting lead times in bending and longitudinal welding operations 
in wind turbine tower manufacturing will be discussed. Additionally, 
the experimental setup employed, the deployment feasibility analysis, 
as well as the interpretability of the models – including the collinearity 
assessment of our variables – will be described.

4.1. Experimental environment

For the development of this paper, all code has been written using 
the Python programming language. Additionally, the details of the 
environment in which the experiments are conducted, including the 
Python version, libraries, and other relevant aspects, are presented in 
Table  3.

4.2. Bending results

In Table  4, the results of various models evaluated on the Bending 
dataset using Random Search optimization are presented. LightGBM 
(LGBM) achieves the lowest MAE and MAPE values, indicating good 
performance in terms of absolute error. On the other hand, GB stands 
out by achieving the lowest RMSE (0.603) and the highest 𝑅2 co-
efficient (0.293), suggesting a better balance between precision and 
explanatory power. The optimal hyperparameters for the GB model, 
which contribute to these results, are detailed in Table  5. In terms 
of efficiency, linear models such as Ridge and Lasso are the fastest 
in training and optimization, as they only require tuning a single 
hyperparameter. However, their accuracy is lower compared to the 
other models. In contrast, XGBoost (XGB) requires the longest tuning 
time (383.851 s), which could be a limiting factor in time-constrained 
scenarios.

The results identify GB as the optimal model, based not only on the 
RMSE metric but also on its superior 𝑅2, making it the most appropriate 
choice for this case. The GB, developed by Friedman (2001), is an 
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ensemble method that trains multiple decision trees iteratively using 
a greedy algorithm, and it is applicable to both classification and 
regression tasks.

The metrics indicate that the predictive power of the GB Regressor 
model is relatively weak. While previous studies consider MAPE values 
between 20% and 50% as indicative of ‘‘reasonable forecasting’’ (Lewis, 
1982), the results show a notable improvement over mean-based pre-
dictions, with the MAPE decreasing by more than 4 percentage points. 
However, this moderate performance is likely attributable to the inher-
ent high variability of the manual bending process and the limitations 
of manually recorded lead time data. Despite these challenges, the es-
timations provided by the GB model can still offer useful insights in an 
industrial context where inefficiencies and inaccuracies are common. 
Furthermore, as elaborated in Section 5, potential avenues for enhanc-
ing the accuracy of the model include advanced feature engineering, 
incorporating alternative data sources, and exploring other machine 
learning approaches. Notably, these estimations contribute to improved 
performance in predicting LW lead times later in this study.

4.3. Longitudinal welding results

Regarding the lead time prediction module in LW, it is important to 
recall that there are multiple feasible system configurations, depending 
on the variables linking the bending and LW modules. Twelve sys-
tem configurations have been tested, and the performance evaluation 
metrics of the selected models, after conducting a random search for 
hyperparameters for each configuration, are shown in Table  6. For 
the sake of brevity, results for each configuration are not displayed; 
only the best model found for each case is presented. Additionally, 
performance metrics of a simple mean-based prediction are included 
as a reference. This model always predicts the mean value of the 
target variable, without using any additional information, serving as 
a baseline to assess whether the more complex models truly improve 
performance.

Appendix  B summarizes the best model and its associated configura-
tions identified through the experiments conducted for the longitudinal 
welding (LW) process. The results presented in Table  6 offer very 
interesting conclusions about the prediction system. In general, the 
GB model and its derivative models, such as LightGBM (LGBM) and 
XGBoost (XGB), have proven to be highly effective across all analysed 
input variable configurations. Additionally, Random Forest (RF), an-
other ensemble method, has also demonstrated strong performance in 
certain scenarios.

XGBoost and LightGBM are advanced algorithms also based on 
boosting but with optimizations that further enhance their perfor-
mance. XGB, as described in Chen and Guestrin (2016), is optimized 
through the regularization of the generated models and stands out 
for its high computational efficiency, ability to avoid overfitting, and 
advanced optimization techniques, such as handling missing data and 
support for both classification and regression tasks. Meanwhile, Light-
GBM, developed by Ke et al. (2017), introduces an algorithm that 
samples data instances, retaining those that contribute the most to 
information gain, i.e., those with larger gradients, and also includes a 
novel algorithm for feature bundling.

Random Forest (RF), first proposed by Breiman (2001), is another 
powerful ensemble method that constructs multiple decision trees and 
combines their predictions through averaging in regression problems. 
Unlike boosting methods, RF builds trees independently using bootstrap 
samples and random feature subsets, which contributes to its robustness 
and versatility in handling both classification and regression tasks.

Furthermore, using the actual value, the predicted value and the 
absolute prediction error of the bending lead time as input for the 
Longitudinal Welding lead time prediction module offers the best per-
formance out of every other configuration in terms of RMSE (the 
decision criterion) (0.821 h) and 𝑅2 (0.672). By using only the pre-
dicted value, the highest value of MAE is achieved (0.524 h) and 



K.-J. Flores-Huamán et al. Computers & Industrial Engineering 209 (2025) 111410 
Table 4
Results obtained for each model with the best configuration through Random optimization on the Bending dataset.
 Model MAE [h] RMSE [h] MAPE 𝑅2 Tuning time [s] Training time [s] Testing time [s] 
 Baseline: Mean-based prediction 0.450 0.717 26.461 −0.001 – – –  
 Ridge 0.433 0.657 25.083 0.161 1.476 0.006 0.00139  
 Lasso 0.437 0.661 25.476 0.149 2.402 0.184 0.00122  
 ENET 0.436 0.660 25.387 0.154 19.140 0.642 0.00126  
 SVR 0.419 0.633 24.846 0.221 17.238 0.553 0.161  
 DT 0.397 0.634 22.535 0.219 1.324 0.057 0.00130  
 RF 0.388 0.607 22.527 0.283 13.884 0.565 0.0174  
 GB 0.383 0.603 22.188 0.293 178.981 1.668 0.0222  
 LGBM 0.377 0.620 21.276 0.252 46.202 0.079 0.00188  
 XGB 0.380 0.653 21.521 0.170 383.851 0.079 0.0150  
 MLP 0.413 0.632 23.759 0.223 88.931 2.586 0.00208  
Table 5
Hyperparameters settings of the best GB model ob-
tained for the Bending dataset.
 Parameter Parameter settings 
 learning_rate 0.0103  
 max_depth 8  
 max_features sqrt  
 n_estimators 401  
 subsample 0.5599  

produces the lowest MAPE (26.524%). These can be considered good 
predictions, particularly when compared to the values obtained without 
any input from the bending module and, even more, to those obtained 
using only the mean lead time as the prediction. The MAPE can be 
reduced by almost 50% using only the prediction error when compared 
to the mean-based predictions.

4.4. Model interpretability

The interpretability of machine learning models is crucial in real-
world applications, particularly when decisions need to be understood 
by domain experts. Some models, like decision trees, are inherently 
interpretable (white-box models), while others, such as neural net-
works or support vector machines, are more opaque (black-box mod-
els), requiring additional techniques for explanation (Loyola-González, 
2019).

White-box models, like decision trees, provide transparency through 
feature importance, making it easy for experts to understand how indi-
vidual features influence predictions. This direct interpretability allows 
users to identify which features are most important for the model’s 
decision-making process. For example, in decision trees, the structure 
itself provides a clear path of decision rules based on the feature values, 
enabling an intuitive understanding of the model’s predictions.

In contrast, for black-box models, such as neural networks or sup-
port vector machines, interpretability is not straightforward. These 
models do not provide direct insights into how features influence their 
decisions. However, techniques like SHAP (Lundberg & Lee, 2017) or 
LIME (Ribeiro et al., 2016) can help by approximating the influence 
of each feature on individual predictions, even for complex models. 
These techniques aim to enhance the interpretability of otherwise 
opaque models by providing a clear explanation of how input features 
contribute to the output.

In this study, SHAP is used due to its ability to provide both global 
and local explanations of model predictions. SHAP (SHapley Additive 
exPlanations), developed by Shapley (1953) is based on cooperative 
game theory, and calculates the contribution of each feature using
Shapley values. These values measure how much each feature con-
tributes to the prediction, considering all possible combinations of 
features and assigning a fair weight to each one. The Shapley value 
for a feature 𝑖 is mathematically defined as the weighted sum of its 
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marginal contributions across all possible subsets of features. Formally, 
it is expressed as: 

𝜙𝑖 =
∑

𝑆⊆𝑁⧵{𝑖}

|𝑆|! (|𝑁| − |𝑆| − 1)!
|𝑁|!

(𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆)) (1)

Where:

• 𝑁 represents the complete set of features in the model.
• 𝑆 denotes a subset of features excluding 𝑖.
• 𝑓 (𝑆) is the model’s prediction when only the features in 𝑆 are 
used.

• 𝑓 (𝑆 ∪ {𝑖}) is the prediction when feature 𝑖 is added to the subset 
𝑆.

• 𝜙𝑖 is the Shapley value for feature 𝑖, quantifying its contribution 
to the model’s output.

Shapley values are derived from the idea of fairly distributing the 
‘payout’ (in this case, the model’s prediction) among the ‘players’ (the 
features). To achieve this, all possible combinations of features are 
considered, and the marginal impact of including a specific feature in 
each combination is measured.

For the prediction of models in each experiment, the model and 
hyperparameters that demonstrate the best performance in terms of 
evaluation metrics are used. The results of these models are visualized 
through graphs depicting the 20 most relevant features, as presented in 
Figs.  9 and 10.

In these graphs, the 𝑋-axis represents the SHAP value, which quan-
tifies the impact of each feature on the model’s prediction, expressed as 
a change in log-odds. A positive SHAP value indicates an increase in the 
prediction, whereas a negative value suggests a decrease. The 𝑌 -axis 
displays the features ranked by their global importance, from highest to 
lowest, as determined by the absolute magnitude of their SHAP values. 
Additionally, the colour of each point encodes the feature value for 
each instance in the dataset: red tones represent high values, while blue 
tones indicate low values. Each point corresponds to an observation 
(row) in the original dataset, allowing for the identification of patterns 
and trends in the influence of features on the model’s predictions.

Fig.  9 provides a detailed view of the contribution of each feature 
to the predictions of the GB model applied to the Bending dataset. 
Among the most influential variables, personnel, bevelling time, sheet 
thickness, and bevel cleaning time stand out, suggesting that factors 
related to labour and material properties have a significant impact on 
the prediction. In particular, sheet thickness exhibits a predominantly 
positive correlation, indicating that an increase in sheet thickness tends 
to raise the model’s prediction.

Furthermore, Fig.  10 provides a detailed insight into the contri-
bution of each feature to the predictions of each model across the 
experiments conducted on the longitudinal welding dataset. Among the 
most influential variables, sheet thickness, sheet width, and personnel 
stand out, suggesting that both metal properties and human resources 
have a significant impact on the predictions. As observed in bending, 
sheet thickness exhibits a predominantly positive correlation. Addition-
ally, the personnel involved in the bending process (personnel-bending) 
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Table 6
Performance evaluation metrics for the LW lead time prediction module with different system configurations.
 Experiment Model MAE RMSE MAPE 𝑅2 Tuning Training Testing  
 [h] [h] time [s] time [s] time [s] 
 Baseline: Mean-based prediction – 0.981 1.437 55.597 −0.003 – – –  
 None GB 0.535 0.857 27.272 0.643 175.619 19.388 0.016  
 Actual value GB 0.540 0.873 27.618 0.630 159.194 24.003 0.027  
 Predicted value GB 0.524 0.833 26.524 0.663 221.555 35.468 0.029  
 Prediction error LGBM 0.538 0.877 27.411 0.627 38.836 0.177 0.002  
 Absolute prediction error GB 0.532 0.869 27.117 0.633 295.295 18.639 0.015  
 Predicted value + Prediction error GB 0.541 0.843 27.371 0.655 191.546 11.252 0.008  
 Predicted value + Absolute prediction error RF 0.572 0.877 29.682 0.626 15.769 1.271 0.034  
 Actual value + Predicted value GB 0.533 0.847 26.725 0.651 342.586 16.057 0.012  
 Actual value + Prediction error XGB 0.544 0.878 27.830 0.626 444.824 0.088 0.017  
 Actual value + Absolute prediction error GB 0.543 0.880 28.038 0.624 352.550 40.457 0.041  
 Actual value + Predicted value + Prediction error GB 0.528 0.835 26.871 0.661 240.571 27.035 0.026  
 Actual value + Predicted value + Absolute prediction error GB 0.535 0.821 26.984 0.672 322.383 49.167 0.038  
Fig. 9. SHAP Values for the Bending Lead Time Prediction Model. The plot illustrates 
the importance and impact of the top 20 features. Each point represents a single 
prediction instance. The feature’s importance is ranked on the 𝑦-axis. The SHAP value 
on the 𝑥-axis indicates the feature’s impact on the model’s output. Positive values 
increase the predicted lead time. The colour indicates the feature’s value for that 
instance, with red for high values and blue for low values.

and machine-related features also play a crucial role, highlighting the 
importance of operators and specific equipment in the longitudinal 
welding process. The inclusion of prediction error metrics has enabled 
a better understanding of the model’s accuracy and reliability, illus-
trating how these metrics influence the interpretation of results. Taken 
together, these findings emphasize the importance of a careful feature 
selection process and the need to consider both material properties and 
operational and human factors to optimize model predictions.

4.5. Collinearity assessment

While SHAP analysis provides powerful insights into feature contri-
butions, its interpretations can be sensitive to multicollinearity, where 
input features are highly correlated. To ensure the robustness of our 
feature importance rankings, a collinearity assessment is performed 
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Table 7
Variance Inflation Factor (VIF) Results for key predictors in bending and longitudinal 
welding models.
 Bending model Longitudinal welding model
 Feature VIF Feature VIF  
 sheet-thickness 1.72 cur 7.96 
 bis 1.39 sheet-thickness 2.82 
 coc 1.39 absolute_prediction_error 2.07 
 sheet-width 1.37 predicted_bending_lead_time 1.54 
 sheet-section-position 1.22 bis 1.50 
 sheet-length 1.20 sheet-width 1.44 
 sheet-ferrule-position 1.07 coc 1.40 
 personnel-bis 1.02 sheet-section-position 1.24 
 personnel-lib 1.02 sheet-length 1.21 
 personnel 1.02 sheet-ferrule-position 1.08 
 lib 1.00 – –  
 personnel-coc 1.00 – –  

using the Variance Inflation Factor (VIF). The VIF quantifies how much 
the variance of an estimated regression coefficient is increased due to 
collinearity. A common rule of thumb considers a VIF value greater 
than 5 or 10 as an indicator of potentially problematic multicollinear-
ity.

The analysis reveals two distinct patterns in our dataset. A specific 
group of features – namely the multiple, detailed measurements of 
sheet thickness, width, and length – exhibit extremely high VIF values, 
significantly exceeding the threshold of 10. This is an expected result, 
as these variables inherently capture redundant information about the 
same physical part.

Conversely, most of the other features, including the key drivers 
identified in our SHAP analysis, show low to moderate VIF values. 
Table  7 presents the VIF scores for the main predictive variables 
in the bending and LW model, excluding the highly inter-correlated 
dimensional measurements for clarity.

Overall, the GB model shows robustness to multicollinearity by 
selecting individual features for decision splits, thereby limiting the 
influence of redundant variables. Nevertheless, interpretability can be 
affected, especially for groups of correlated features whose importance 
should be assessed collectively rather than in isolation. The fact that 
top-ranked variables – such as staff experience and overall sheet thick-
ness – present low VIF values supports the validity of their predictive 
power and reinforces the robustness of our study’s main findings.

4.6. Deployment feasibility analysis

To validate the suitability of the system for production environ-
ments and assess its real-time operational capabilities, a simulated 
deployment experiment is conducted. This analysis aims to measure the 
end-to-end prediction latency by replicating the operational workflow, 
where on-demand predictions are required for individual manufactur-
ing operations.
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Fig. 10. SHAP values for different experiments on the LW dataset (part 1). This figure compares the top 20 feature importances across 12 LW lead time prediction models, each 
trained with a different set of bending-related inputs. In each subplot (a–l), features are ranked by importance (y-axis), and SHAP values (x-axis) indicate their effect on lead time 
predictions (positive = longer lead time). Colour represents the feature value (red = high, blue = low).
The methodology consists of timing the entire prediction pipeline 
for single instances from the test set. This pipeline includes loading 
the pre-trained model along with its preprocessing artifacts, applying 
real-time transformations to raw input data, and performing model 
inference to generate a prediction. The experiment is carried out for 
the best models associated with the Bending and Longitudinal Welding 
(LW) processes, in order to obtain a comprehensive view of the system’s 
computational performance.

As shown in Table  8, the average prediction latency remains below 
1 millisecond for both models, with the 95th percentile latency not 
exceeding 1.11 ms. This performance translates into a high throughput 
of over 1437 predictions per second for the Bending model and more 
than 1136 predictions per second for the LW model, all executed on 
standard hardware as detailed in Table  3.
14 
Table 8
End-to-end prediction performance in a simulated deployment environment.
 Metrics Bending model LW model 
 Mean Latency (ms) 0.70 0.88  
 Std Dev Latency (ms) 0.09 0.12  
 Min Latency (ms) 0.60 0.73  
 Max Latency (ms) 1.35 1.95  
 P95 Latency (ms) 0.88 1.10  
 Throughput (pred/s) 1437.49 1136.04  

Such computational efficiency indicates that the system imposes a 
negligible processing load in the context of its intended use for pro-

duction planning and control, where decision cycles typically operate 
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Fig. 10. (continued).
on the scale of minutes or hours. These quantitative results not only 
confirm the accuracy of the system but also demonstrate its strong suit-
ability for real-world industrial deployment, providing decision support 
in near real-time without compromising computational resources.

5. Discussion

This section presents a comprehensive discussion of the results 
obtained in this study, contextualizing them both in the academic 
literature and in the industrial realities of this field of study. We analyse 
the comparative performance of machine learning models against tradi-
tional engineering methods, explore the broader industrial implications 
and limitations of the findings, and propose strategies for improving 
prediction accuracy in particularly challenging stages of the process. 
Through this discussion, we aim to provide insights not only into the 
technical contributions of this work but also into its practical relevance 
and future research directions.
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5.1. Comparison between ML models and traditional engineering methods

The results obtained in this study demonstrate that machine learn-
ing (ML) models are capable of providing more accurate estimates of 
production times compared to traditional engineering methods, partic-
ularly in the context of the longitudinal welding process. This improve-
ment in accuracy is reflected in the error metrics used, where the ML 
model with the best performance presents significantly lower MAE and 
RMSE values compared to those obtained using traditional engineering 
estimates.

One of the key advantages of ML models is their ability to in-
corporate interpretability, which allows for the identification of the 
attributes that truly influence the predictions. This approach not only 
facilitates model optimization but also allows for the elimination of 
variables that, although initially considered relevant, do not have a 
significant impact on the predictions. Furthermore, ML models can 
be continuously updated as new data are incorporated, ensuring that 



K.-J. Flores-Huamán et al. Computers & Industrial Engineering 209 (2025) 111410 
Fig. 10. (continued).
the predictions remain aligned with the current conditions of the 
manufacturing process. This characteristic sets ML models apart from 
approaches such as direct formulation, which can be unrealistic, or 
linear programming, which does not allow for dynamic updates.

However, the majority of previous studies on the estimation of 
lead times in the manufacture of wind turbine towers have focused on 
the implementation of ML models without a comparative evaluation 
against traditional engineering methods. This lack of comparison can 
hinder informed adoption of these technologies by industry profession-
als. This study seeks to address this gap by conducting a comparative 
evaluation of delivery time predictions for the longitudinal welding 
process, using both traditional engineering methods and the ML models 
developed in our study.

In this context, we compare the predictions of the ML model with 
the best performance for the longitudinal welding process with the time 
calculations employed in the studied factory. Traditional engineering 
methods estimate the total time for each tower section based on various 
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input characteristics, such as structural features, weldable internal 
elements, and surface treatment schemes. However, one of the main 
drawbacks of these methods is that the formulas used may be based on 
outdated experiences, as they are not continuously updated.

In the approach adopted in this study, individual ferrule times are 
used to make predictions for each ferrule within a tower section, which 
are then summed to obtain the total time for the section. This approach 
differs from that used in engineering, which works with the full section.

Table  9 presents a comparison between the times estimated using 
the engineering method and the predictions made by the ML model, 
relative to the actual times recorded in the factory. It is evident that 
the mean absolute error (MAE) of the ML model is 2.03, significantly 
lower than the value of 11.36 obtained using the traditional method. 
Similarly, the root mean square error (RMSE) decreases from 12.01 
with the engineering method to 3.13 with the ML model. Additionally, 
the maximum deviation decreases from 28.56 to 21.59, indicating a 
lower dispersion of errors in the predictions made by the ML model.
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Table 9
Comparison of engineering method and longitudinal welding machine learning predic-
tion relative to the actual times obtained in the factory.
 Method Max deviation Min deviation MAE RMSE 
 Engineering 28.56 0.21 11.36 12.01 
 ML Prediction 21.59 0.00 2.03 3.13  

Fig. 11. Comparison of Machine Learning predictions and engineering estimates with 
actual manufacturing lead times. The scatter plot contrasts the accuracy of ML 
predictions (blue) and traditional engineering estimates (red) relative to the actual 
lead times (x-axis). The closer alignment of the ML points to the identity line (𝑦 = 𝑥) 
indicates a higher predictive accuracy of the ML model.

The significant improvement achieved by the machine learning 
model is further illustrated in Fig.  11. This visualization reinforces 
the findings presented in Table  9, showing that the ML model’s pre-
dictions align more closely with the actual observed lead times than 
the traditional engineering estimates. The plot provides clear visual 
evidence of the model’s capacity to capture the underlying complexities 
of the manufacturing process, resulting in more reliable and accurate 
forecasts.

5.2. Error propagation and reliability analysis of the model

To assess the model’s robustness beyond overall accuracy, we inves-
tigate how prediction errors propagate across sequential manufacturing 
stages. We hypothesize that instances with high prediction errors in an 
early stage (Bending) would also exhibit high errors in a subsequent 
stage (Longitudinal Welding, LW). To test this, we employe a stratified 
sampling approach on the test set, creating a representative sample of 
instances with low, medium, and high absolute prediction errors from 
the Bending stage.

As shown in Fig.  12, the analysis reveals a moderate and statistically 
significant positive correlation between the absolute prediction errors 
of the two stages (Pearson’s 𝑟 = 0.5082, 𝑝 = 0.00016). The consistency 
in prediction uncertainty suggests that a high error in early stages can 
serve as an early warning signal. This enables planners to identify po-
tentially problematic towers and apply proactive mitigation strategies 
to improve the reliability of the production schedule.

5.3. Industrial implications and limitations

The findings of this study have significant industrial implications. 
The ability to predict longitudinal welding times with greater accuracy 
can enhance production planning, optimize resource allocation, and 
reduce costs associated with downtime or inaccurate estimates. How-
ever, it is important to acknowledge that the performance of the ML 
model heavily depends on the quality and quantity of available data. 
In environments where historical data are limited or biased, traditional 
methods may still offer a more stable and reliable alternative.
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Fig. 12. Correlation between absolute prediction errors in the bending and longitudinal 
welding (LW) stages.

A limitation of this study is that it is based on historical production 
data and has not been validated in a real-time production environment. 
Future research could explore the implementation of these models in 
live monitoring systems, as well as the integration of online learning 
techniques to improve the model’s ability to adapt to changes in 
manufacturing conditions.

However, to mitigate concerns about deployment feasibility, a sim-
ulated performance analysis is conducted (see Section 4.6), which 
confirms that the system’s end-to-end latency is minimal, making it 
highly suitable for integration into a live production environment. 

5.4. Strategies for continuous performance enhancement of predictive mod-
els

The modular nature of the proposed lead-time forecasting system 
allows iterative refinement and improvement of individual component 
models. Although the overall system has significant advantages, some 
individual process models (such as the folding lead time model of 
this study) may show moderate performance due to factors such as 
high process variability, reliance on manual data, or complexity of the 
specific operation. In this framework, several general strategies can be 
systematically applied to improve the accuracy of any such prediction 
model:

• Advanced feature engineering: the quality of input features is 
paramount. Continuously exploring and engineering new features 
based on domain expertise is crucial for improving model perfor-
mance. This includes creating interaction terms between existing 
variables (e.g., in the longitudinal welding process, one might 
consider interaction terms such as the number of passes combined 
with the operator’s experience, since multi-pass weld quality often 
depends heavily on the welder’s skill), adding polynomial fea-
tures to capture non-linear relationships, or deriving time-based 
features such as rolling averages of past cycle times or operator 
fatigue indicators (if measurable). For example, if a particular 
welding model is underperforming, it might be valuable to inves-
tigate features related to ambient temperature or humidity that 
were not previously considered.

• Alternative data sources: reducing dependence on manual data 
entry is a crucial objective to minimize errors and biases. For 
any model, the integration of data from alternative sources should 
be considered. This may include incorporating sensor data (such 
as vibration, temperature, energy consumption or image-based 
quality assessments), detailed operational logs capturing precise 
machine settings, tooling configurations, and minor process inter-
ruptions, as well as upstream or downstream quality metrics that 
exert a measurable influence on process outcomes or lead times.
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Table A.10
Hyperparameter tuning ranges for different models.
 Model Parameter Tuning range Description  
 Ridge/ Lasso alpha [0.001,2] Regularization parameter  
 ENET alpha [1 × 10−15,1] Regularization parameter  
 l1_ratio [1 × 10−15, 1] L1 regularization coefficient  
 DT max_depth [1,32] Maximum depth of each tree  
 min_samples_split [2,20] Minimum number of samples 

required to split a node
 

 min_samples_leaf [1,20] Minimum number of samples 
required to be at a leaf node

 

 RF max_features {sqrt, log2} Number of features to consider for 
each split

 

 n_estimators [10,200] Number of trees in the forest  
 max_depth [4,20] Maximum depth of each tree  
 min_samples_split [2,20] Minimum number of samples 

required to split a node
 

 min_samples_leaf [1,10] Minimum number of samples 
required at each leaf

 

 GB n_estimators [50,1000], step=50 Number of estimators  
 learning_rate [1 × 10−4, 0.3] Learning rate  
 max_depth [3,9] Maximum depth of trees  
 subsample [0.5,1.0], step=0.1 Proportion of samples used to train 

each tree
 

 max_features {sqrt, log2, None} Number of features to consider for 
each split

 

 XGB booster {gbtree, gblinear, dart} Type of booster  
 reg_lambda [1 × 10−8, 1.0] L2 regularization coefficient (lambda) 
 reg_alpha [1 × 10−8, 1.0] L1 regularization coefficient (alpha)  
 max_depth [3,11] Maximum depth of trees  
 LGBM boosting gbdt Type of boosting algorithms  
 lambda_l1 [1 × 10−8, 10.0] L1 regularization coefficient  
 lambda_l2 [1 × 10−8, 10.0] L2 regularization coefficient  
 num_leaves [2,256] Maximum number of leaves per tree  
 feature_fraction [0.4,1.0] Proportion of features used per 

iteration
 

 bagging_fraction [0.4,1.0] Proportion of samples used for 
bagging

 

 bagging_freq [1,7] Frequency of bagging (0 disables 
bagging)

 

 min_child_samples [1,100] Minimum number of data points in a 
leaf

 

 min_split_gain [0.0,0.2] Minimum loss reduction required to 
make a split

 

 SVR kernel linear, rbf, poly Type of kernel  
 C [0.1,10] Regularization parameter  
 gamma {scale, auto} Kernel coefficient  
 epsilon [[1 × 10−3,10] Error tolerance  
 MLP hidden_layer_sizes (50,), (100,), (50, 50), (100, 50) Hidden layer sizes  
 activation relu, tanh Activation function  
 solver ADAM, SDG Algorithm for weight optimization  
 learning_rate constant, adaptive Learning rate used by the solver  
• Model re-evaluation and hyperparameter optimization: periodi-
cally re-evaluating the choice of algorithm for a specific process, 
or conducting more advanced hyperparameter tuning (e.g., mov-
ing beyond standard random search to Bayesian optimization or 
other sophisticated methods) as more data becomes available or 
features are refined, is a standard practise.

5.5. Economic impact and strategies for cost reduction

While the technical performance of the ML models is the primary 
focus of this study, their ultimate industrial value is determined by their 
ability to reduce production costs and enhance operational efficiency. 
The moderate performance of the bending model, for instance, is not 
just a statistical metric but represents a tangible source of economic 
uncertainty. This uncertainty translates into direct and indirect costs, 
such as:

• Increased buffer times: planners must account for prediction vari-
ability by allocating extra time between sequential operations 
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(bending and LW), leading to planned idle time for downstream 
workstations and personnel, which is a direct cost.

• Reduced throughput: unexpected delays in the bending process 
can create bottlenecks, disrupting the production flow and poten-
tially reducing the overall output of the plant.

• Suboptimal resource allocation: without reliable time estimates, 
assigning operators or machines to tasks becomes less efficient, 
missing opportunities to align personnel experience with process 
complexity.

Conversely, the proposed system already provides significant eco-
nomic value. The 54% reduction in MAE for the LW process, when com-
pared to traditional engineering estimates, allows for tighter production 
schedules, reduced work-in-progress (WIP) inventory, and a lower risk 
of incurring penalties for late deliveries. This demonstrates that even 
with moderate upstream predictions, the integrated ML approach is a 
powerful tool for cost optimization.

From a cost-benefit perspective, strategies for enhancing model 
accuracy should be evaluated as business investments. Improving the 
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Table B.11
Configuration of the hyperparameters of the different experiments obtained for the Longitudinal Welding dataset.
 Experiment Model Parameter Parameter settings 
 None GB learning_rate 0.0146  
 max_depth 5  
 n_estimators 597  
 subsample 0.8548  
 Actual value GB max_depth 7  
 n_estimators 649  
 learning_rate 0.0072  
 subsample 0.6681  
 Predicted value GB max_depth 6  
 n_estimators 982  
 subsample 0.7597  
 learning_rate 0.0143  
 Prediction error LGBM bagging_freq 3  
 lambda_l2 0.3155  
 min_child_samples 21  
 lambda_l1 7.6414  
 num_leaves 210  
 bagging_fraction 0.9266  
 feature_fraction 0.6820  
 Absolute prediction error GB learning_rate 0.0221  
 max_depth 6  
 subsample 0.8131  
 n_estimators 479  
 Predicted value + Prediction error GB max_depth 4  
 subsample 0.9626  
 learning_rate 0.0491  
 n_estimators 337  
 Predicted value + Absolute prediction error RF n_estimators 143  
 min_samples_leaf 1  
 max_features sqrt  
 max_depth 19  
 min_samples_split 5  
 Actual value + Predicted value GB learning_rate 0.0482  
 max_depth 7  
 subsample 0.9470  
 n_estimators 292  
 Actual value + Prediction error XGB alpha 0.0408  
 booster gbtree  
 lambda 0.0001  
 max_depth 3  
 Actual value + Absolute prediction error GB n_estimators 976  
 learning_rate 0.0040  
 max_depth 7  
 subsample 0.7136  
 max_features  
 Actual value + Predicted value + Prediction 
error

GB n_estimators 520  

 subsample 0.7315  
 learning_rate 0.0109  
 max_depth 8  
 Actual value + Predicted value + Absolute 
prediction error

GB subsample 0.8213  

 n_estimators 834  
 max_depth 8  
 learning_rate 0.0345  
model through advanced feature engineering or hyperparameter re-
optimization represents a low-cost initiative with a potentially high 
return, primarily requiring computational resources and data science 
expertise.

However, the most significant leap in performance and cost reduc-
tion would likely come from addressing the root cause of the bending 
model’s moderate accuracy: its reliance on manual data. Investing in 
automated data collection systems (such as sensors or machine logs) 
involves a higher initial capital expenditure. Nevertheless, the potential 
return on investment (ROI) is substantial. Such an investment would 
not only drastically improve prediction accuracy, thereby minimizing 
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the previously mentioned costs associated with uncertainty, but could 
also enable real-time process monitoring, facilitate early fault detection, 
and ultimately pave the way for a more resilient and cost-effective 
production control system. Therefore, this study provides a quantitative 
baseline to support and justify future investments in the digitalization 
of the shop floor.

6. Conclusions and future work

This work introduces a machine learning-based system for lead time 
prediction in wind turbine tower manufacturing, focusing on bending 
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and longitudinal welding (LW) operations. The results underscore three 
pivotal contributions:

1. Superior performance over engineering methods: the ML model 
for LW achieves a 54% reduction in MAE (2.03 vs. 11.36 h) 
and 74% lower RMSE (3.13 vs. 12.01 h) compared to traditional 
engineering estimates. This stark contrast highlights the limita-
tions of conventional approaches, which rely on static formulas 
and outdated assumptions, and validates Ml’s ability to capture 
complex, dynamic relationships in production data.

2. Explicit modelling of sequential dependency: while bending pre-
dictions exhibit moderate accuracy due to high manual process 
variability, their integration as inputs – specifically the predicted 
lead time and its associated error – significantly enhances LW 
lead time estimation. This demonstrates the critical importance 
of modelling inter-process dependencies to improve downstream 
predictive accuracy in sequential manufacturing.

3. Actionable insights and practical viability: the system’s inter-
pretability, enabled by SHAP analysis, moves beyond a ‘‘black 
box’’ approach by identifying that factors such as sheet thick-
ness, operator experience, and upstream quality are critical 
drivers of LW lead times. These insights provide a clear, evidence
-based guide for decision-makers to optimize resource allocation 
and prioritize process improvements. This, combined with the 
system’s high computational efficiency (<1 ms per prediction), 
confirms its practical viability for near-real-time production 
control.

Beyond the specific application, this research presents a method-
ologically generalizable framework. The core concept of sequential 
predictive integration is transferable to other industries characterized 
by multi-stage production and high variability, such as aerospace com-
ponent manufacturing, shipbuilding, or engineer-to-order (ETO) sys-
tems. By leveraging standard enterprise data sources (ERP, QMS), 
this approach provides a template for modelling operational interde-
pendencies and improving planning accuracy in diverse and complex 
manufacturing environments.

In summary, this research provides empirical evidence that a se-
quential ML approach not only outperforms traditional engineering 
methods but also offers a scalable and interpretable framework for 
adaptive production control. The findings lay a quantitative foundation 
for industrial decision-makers, offering a clear roadmap to transition 
from static, heuristic-based planning to a dynamic, data-driven strategy 
that can unlock significant gains in efficiency and predictability in 
complex industrial settings.

Building upon these results, future research should aim to overcome 
the limitations identified throughout this study and further enhance 
the proposed framework. A primary avenue lies in the integration of 
automated data sources, particularly through the incorporation of IoT 
sensor data from machinery, such as energy consumption and vibra-
tion metrics, as well as computer vision systems for quality control. 
These technologies would not only reduce human error and bias in 
data collection but also enable real-time anomaly detection, which is 
particularly valuable in highly variable processes like bending. This 
evolution aligns with the principles of Industry 4.0 and the emerging, 
more human-centric vision of Industry 5.0. The latter seeks to create 
resilient and sustainable production systems by harmonizing technol-
ogy with human expertise and environmental concerns (Guerrero et al., 
2025). By enhancing data quality and enabling real-time monitoring, 
our framework could become a foundational component of such an 
advanced, sustainable operational management system.

Beyond data acquisition, the current framework could be expanded 
to model the entire production line, incorporating downstream op-
erations such as flange fitting and circular welding. Developing a 
holistic, end-to-end predictive model would support global production 
flow optimization, improve delivery time forecasting, and enhance the 
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management of bottlenecks, ultimately leading to a more resilient and 
responsive manufacturing system. Furthermore, the proposal is not 
applicable solely to wind turbine tower manufacturing, but rather to 
multiple other industrial setting that show significant interdependence 
between their processes.

Finally, there is substantial potential in advancing the predictive 
models through improved feature and model engineering. This includes 
the creation of interaction features – for example, linking operator 
experience with material complexity – and exploring advanced ma-
chine learning techniques such as semi-supervised or self-supervised 
learning. These approaches would allow the framework to leverage 
large amounts of unlabelled data, thereby increasing robustness and 
generalizability in scenarios with limited labelled datasets.
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Appendix A. Hyperparameters of machine learning models

The table in this section showcases the hyperparameter configu-
rations used during the training stage of the machine learning and 
deep learning models. Table  A.10 presents the hyperparameters for 
decision trees and random forests, while additional hyperparameter 
configurations for other models will be detailed in subsequent sections.

Appendix B. Hyperparameter configuration for LW experiments

Table  B.11 summarizes the best model and its associated configura-
tions identified through the experiments conducted for the longitudinal 
welding process.
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