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Abstract. The efficient estimation of lead times in manufacturing processes is 
crucial for optimizing production and reducing costs. In wind tower manufactur-
ing, particularly in the longitudinal welding operation, accurate lead time pre-
diction is essential for maintaining smooth workflows and meeting tight deliv-
ery schedules. Traditional engineering methods, which rely on analytical models 
and heuristics, have been widely used to estimate welding times. However, these 
methods often fail to account for the complexity and variability of real-world 
conditions, such as equipment wear, environmental factors, and production bot-
tlenecks. In recent years, machine learning (ML) techniques have emerged as pow-
erful tools for predictive modelling, leveraging large datasets and learning from 
patterns within the data. This study compares traditional engineering methods 
with ML approaches for lead time prediction in longitudinal welding, using data 
from a wind tower manufacturing plant. The results demonstrate that ML models, 
particularly Gradient Boosting, outperform traditional methods in accuracy and 
flexibility, offering significant potential for improving operational efficiency in the 
wind tower industry. 
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1 Introduction 

The efficient estimation of lead times in manufacturing processes is crucial for opti-
mizing production and reducing costs. In wind tower manufacturing, particularly in the 
longitudinal welding operation, accurate lead time prediction is essential for maintaining 
smooth workflows and meeting tight delivery schedules. Traditional engineering meth-
ods, which rely on analytical models and heuristics, have been widely used to estimate 
welding times. However, these methods often fail to account for the complexity and 
variability of real-world conditions, such as equipment wear, environmental factors, and 
production bottlenecks.
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In recent years, machine learning (ML) techniques have emerged as powerful tools 
for predictive modelling, leveraging large datasets and learning from patterns within 
the data. Unlike traditional methods, ML models can adapt to changes in production 
dynamics, offering the potential for more accurate and flexible lead time estimations. 
Despite the promising applications of ML in manufacturing, there remains a need for 
a direct comparison between traditional engineering methods and machine learning 
approaches in real-world settings. 

Currently, factories employ techniques such as direct formulation or linear program-
ming to estimate lead times. However, these methodologies have certain limitations. 
Direct formulation, although widely used, may not realistically reflect the times or costs 
involved in processes. On the other hand, linear programming, while useful, may not 
be fully updatable over time, making it difficult to apply in dynamic production envi-
ronments. Therefore, the ability of machine learning algorithms to analyse large sets 
of historical data, identify patterns, and make accurate predictions makes them invalu-
able for optimizing lead times and improving operational efficiency in the wind tower 
industry. 

Notably, the only works that address wind turbine manufacturing from a produc-
tion standpoint are those by Sainz [1], who describes the manufacturing process and 
several improvement steps based on increased automation; Park et al. [2], who anal-
yse composite wind turbine towers from a design and manufacturing perspective; and 
Alorenzo (2022), who applies an ML-based approach to the bending process of wind 
turbine tower manufacturing, highlighting the influence of worker experience and age 
due to the manual nature of the operation. 

In addition, Kenny et al. [3] present an ML-based approach to predict lead times for 
different operations in wind tower manufacturing. Their study, based on data collected 
from facilities in Spain and Brazil, evaluates nine regression algorithms, including Ran-
dom Forest, XGBoost, and LightGBM, as well as deep learning models such as TabNet 
and NODE. The results indicate that models based on gradient boosting are the most 
effective in predicting processing times and optimizing resource allocation, emphasizing 
the importance of integrating ML into production planning in the wind tower industry. 

Despite these advancements, there is a notable gap in the literature regarding direct 
comparisons between traditional engineering methods and ML approaches in the context 
of wind tower manufacturing. Most existing studies focus on applying ML models 
without directly contrasting them with traditional methods, limiting the ability of industry 
professionals to make informed decisions about which approach is more suitable for their 
specific needs. This study aims to address this gap by comparing lead time predictions 
for longitudinal welding in wind tower manufacturing using traditional engineering 
methods and ML models developed by our team. By evaluating the performance of 
these two approaches, we seek to provide insights into their respective advantages and 
limitations, offering practical recommendations for their use in industrial applications. 
The remainder of this work is structured as follows: Sect. 2 describes the methodology, 
including the welding process, data used, ML models, and evaluation metrics; Sect. 3 
presents the experimental results and discussion; and Sect. 4 concludes the study.
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2 Methodology 

2.1 Description of the Longitudinal Welding Process 

The longitudinal welding (LW) process is a critical step in the manufacturing of wind 
turbine towers. It involves welding together the two edges of a bent steel plate to form a 
fully enclosed cylindrical or conical ferrule, ensuring its structural integrity. Depending 
on the plate’s thickness and diameter, slight deformations such as ovalization may occur 
after welding. Once completed, the ferrule is ready for storage or transportation until it 
is required for further assembly into larger tower sections. Before final integration, these 
sections undergo additional welding and surface treatments to enhance their durability 
and prepare them for on-site installation. 

2.2 Data Employed 

This study relies on data collected from the manufacturing plant, where approximately 
875 tower sections were produced between 2022 and 2024, comprising over 7,300 fer-
rules. The data were extracted from multiple company databases, including the Enter-
prise Resource Planning (ERP) system and the Quality Management System (QMS), 
and then integrated to create a comprehensive dataset containing all relevant variables 
for analysis. 

The dataset for the longitudinal welding process includes several explanatory vari-
ables categorized into four groups: historical lead time records from upstream processes, 
contextual information (e.g. machine ID and operator identifiers), quality control reports, 
and bending lead time predictions with their absolute error values. Given the diverse data 
sources, ensuring data consistency was a crucial step before model development. 

To address potential inconsistencies and missing values, a thorough preprocess-
ing phase was implemented. This included outlier detection and treatment, as well as 
imputation of missing values where necessary. Numerical attributes were normalized 
to facilitate comparison across models, while categorical variables were encoded using 
techniques such as One-Hot Encoding. Additionally, during feature selection, columns 
with more than 35% missing values were removed, as they exhibited low represen-
tativity and could introduce biases, ultimately affecting the model’s performance and 
generalizability. 

2.3 Machine Learning Models and Evaluation Metrics 

In this study, ten machine learning (ML) models were implemented to predict the lead 
time of the longitudinal welding process. These models were selected based on their 
effectiveness in handling structured manufacturing data and their ability to capture com-
plex relationships among variables. The models were categorized into four main families: 
linear models, kernel-based methods, tree-based models, and artificial neural networks. 

Linear models, including Ridge, Lasso, and Elastic Net, were incorporated as 
baselines due to their interpretability and ability to manage collinearity through 
regularization.
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Support Vector Regression (SVR) was considered separately under kernel-based 
methods due to its ability to model nonlinear relationships by transforming data into 
higher-dimensional spaces. 

Tree-based models were divided into single-tree methods, such as Decision Tree 
Regressor (DT), and ensemble methods, including Random Forest (RF), Gradient Boost-
ing (GB), LightGBM (LGBM), and XGBoost (XGB). While DT recursively parti-
tions the feature space, ensemble methods enhance prediction accuracy by aggregating 
multiple weak learners, with boosting techniques iteratively correcting prior errors. 

Additionally, Artificial Neural Networks (ANNs), specifically the Multi-Layer Per-
ceptron (MLP) Regressor, were implemented to model highly complex relationships 
using deep learning techniques. 

To ensure a fair comparison, all models underwent the same preprocessing steps, 
including feature selection, categorical variable encoding, and numerical attribute nor-
malization. Given that the engineering department calculates schedules in sections rather 
than individual ferrules, and each sample represents a ferrule, the training and test sets 
were divided using the hold-out technique with a 75%–25% ratio. This division was per-
formed by tower section, ensuring that all ferrules from a given section were assigned 
to either the training or test set, thereby guaranteeing that evaluations were conducted 
on unseen data. 

During training, models were initially evaluated without hyperparameter tuning to 
establish baseline performance. Once the functionality of these base models was veri-
fied, Random Search optimization combined with cross-validation was applied to fine-
tune their hyperparameters. This approach was chosen due to its balance between effi-
ciency and simplicity, outperforming Grid Search by avoiding exhaustive hyperparam-
eter exploration and being computationally less expensive than Bayesian Optimization 
while still delivering competitive results. 

Finally, the best-performing tuned model was retrained using the full training and 
validation dataset and subsequently used to predict the lead time for test set instances. 
If the predictive accuracy met acceptable thresholds, the model was further retrained on 
the complete dataset before being deployed for production use. 

To evaluate model performance, Root Mean Squared Error (RMSE) was prioritized, 
as it clearly measures prediction error and penalizes larger deviations, making it effective 
for identifying outliers and simplifying interpretation. RMSE was selected for its ability 
to represent errors in the same units as the data and its sensitivity to large errors. In 
cases of tied RMSE values across models, Mean Absolute Error (MAE) was used as 
a secondary criterion to compare the model predictions with engineering estimates, 
offering a simpler measure of the average error. 

3 Experimental Results and Discussion 

The results in Table 1 show that Gradient Boosting (GB) outperforms all other models 
in every evaluation metric, achieving the lowest MAE (0.53), RMSE (0.82), and MAPE 
(26.98). While LightGBM and XGBoost performed similarly in some areas, GB con-
sistently provided the best results across all key metrics. This makes Gradient Boosting 
the most suitable model for predicting lead times in the longitudinal welding dataset and 
the benchmark for comparison with engineering estimates.
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Table 1. Results obtained by each model with the best configuration through random search for 
the longitudinal welding dataset. 

Model MAE RMSE MAPE R2 

DT 0.61 0.98 30.84 0.53 

Enet 0.67 0.99 34.96 0.53 

GB 0.53 0.82 26.98 0.67 

Lasso 0.67 0.98 34.91 0.53 

LGBM 0.53 0.87 27.03 0.64 

MLP 0.61 0.93 31.29 0.58 

RF 0.58 0.89 29.77 0.62 

Ridge 0.67 0.98 34.72 0.53 

SVR 0.6 0.92 31.33 0.59 

XGB 0.54 0.87 27.51 0.64 

Once the model was obtained, it was compared to the engineering time calculations 
used in the factory. The engineering method calculates the total segment time based 
on various input characteristics, such as material properties, process parameters among 
other attributes. Since our data set is based on individual ferrule times, predictions were 
made for each ferrule within a segment and then summed to obtain the total time. 

The Table 2 presents a comparison of the engineering method and machine learning 
predictions with actual production times, while Fig. 1 displays the absolute percentage 
errors relative to the real times for a random selection of 25 samples. It can be observed 
that the machine learning predictions closely align with the actual production times, with 
a smaller margin of error compared to the engineering calculations. This suggests that 
ML predictions could be useful not only for more accurately estimating welding times 
but also for detecting anomalies in case of process delays. 

Table 2. Comparison of engineering method and machine learning prediction relative to the actual 
times obtained in the factory. 

Method Max Deviation Min Deviation MAE RMSE 

Engineering 28.56 0.21 11.36 12.01 

ML Prediction 21.59 0.00 2.03 3.13
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Fig. 1. Absolute percentage errors relative to the actual times for a random selection of 25 samples. 

4 Conclusions 

This study demonstrates the superiority of machine learning (ML) models, particularly 
Gradient Boosting (GB), over traditional engineering methods in predicting lead times 
for longitudinal welding in wind tower manufacturing. GB consistently outperforms 
other models across key metrics (MAE, RMSE, MAPE), with ML predictions aligning 
more closely with actual production times. The adaptability of ML models to dynamic 
environments and their ability to detect process anomalies highlight their potential to 
enhance operational efficiency. Future research should refine these models and explore 
their application to other renewable energy manufacturing processes. 
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